[1] |
何宜鸿, 李彦锋, 黄树恺, 等. 基于深度卷积神经网络的自适应图像去雾算法[J]. 电子科技, 2020, 33(8):70-73.
|
|
He Yihong, Li Yanfeng, Huang Shukai, et al. Adaptive image dehazing algorithm based on deep convolutional neural network[J]. Electronic Science and Technology, 2020, 33(8):70-73.
|
[2] |
秦兴, 高晓琪, 陈滨. 基于压缩卷积神经网络的图像超分辨率算法[J]. 电子科技, 2020, 33(5):1-8.
|
|
Qin Xing, Gao Xiaoqi, Chen Bin. Image super-resolution algorithm based on squeezenet convolution neural network[J]. Electronic Science and Technology, 2020, 33(5):1-8.
|
[3] |
Hoel C J, Wolff K, Laine L. Automated speed and lane change decision making using deep reinforcement learning[C]. Maui: Proceedings of the Twenty-first International Conference on Intelligent Transportation Systems, 2018.
|
[4] |
Zhang S, Peng H, Nageshrao S, et al. Discretionary lane change decision making using reinforcement learning with model-based exploration[C]. Boca Raton: Proceedings of the Eighteenth IEEE International Conference On Machine Learning And Applications, 2019.
|
[5] |
卢丽强, 郑思泽, 肖倾城, 等. 面向卷积神经网络的FPGA设计[J]. 中国科学:信息科学, 2019, 49(3):277-294.
|
|
Lu Liqiang, Zheng Size, Xiao Qingcheng, et al. Accelerating convolutional neural networks on FPGAs[J]. Scientia Sinica:Informations, 2019, 49(3): 277-294.
|
[6] |
Alwani M, Chen H, Ferdman M, et al. Fused-layer CNN accelerators[C]. Taipei: Proceedings of the Forty-ninth Annual IEEE/ACM International Symposium on Microarchitecture, 2016.
|
[7] |
Kim S K, McAfee L C, Mcmahon P L, et al. A highly scalable restricted boltzmann machine FPGA implementation[C]. Prague: Proceedings of the International Conference on Field Programmable Logic and Applications, 2009.
|
[8] |
Lavin A, Gray S. Fast algorithms for convolutional neural networks[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
|
[9] |
訾晶, 张旭欣, 王钰, 等. 基于FPGA的可配置神经网络硬件设计[J]. 传感器与微系统, 2020, 39(12):92-95.
|
|
Zi Jing, Zhang Xuxin, Wang Yu, et al. Hardware design of configurable neural network based on FPGA[J]. Transducer and Microsystem Technologies, 2020, 39(12):92-95.
|
[10] |
左国渭, 应三丛. FPGA的可配置卷积运算单元的设计与实现[J]. 单片机与嵌入式系统应用, 2020, 20(11):54-58.
|
|
Zuo Guowei, Ying Sancong. Design and implementation of configurable convolution operation unit based on FPGA[J]. Microcontrollers & Embedded Systems, 2020, 20(11):54-58.
|
[11] |
Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 7(7):354-377.
|
[12] |
Phan H, Hertel L, Maass M, et al. Robust audio event recognition with 1-max pooling convolutional neural networks[C]. Beijing: Proceedings of the Seventeenth Annual Conference of the International Speech Communication Association, 2016.
|
[13] |
Girones R G, Palero R C, Boluda J C, et al. FPGA implementation of a pipeflned on-line backpropagation[J]. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 2005, 40(2):189-213.
doi: 10.1007/s11265-005-4961-3
|
[14] |
Le Cun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
doi: 10.1109/5.726791
|
[15] |
张占军, 彭艳兵, 程光. 基于CIFAR-10的图像分类模型优化[J]. 计算机应用与软件, 2018, 35(3):177-181.
|
|
Zhang Zhanjun, Peng Yanbing, Cheng Guang. The optimization of image categorization model based on CIFAR-10[J]. Computer Applications and Software, 2018, 35(3):177-181.
|
[16] |
Molchanov P, Tyree S, Karras T, et al. Pruning convolutional neural networks for resource efficient transfer learning[C]. San Juan: Proceedings of the International Conference on Learning Representations, 2016.
|
[17] |
Suda N, Chandra V, Dasika G, et al. Throughput-optimized OpenCL-based FPGA accelerator for large-scale convolutional neural networks[C]. Monterey: Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2016.
|
[18] |
Zhang C, Prasanna V. Frequency domain acceleration of convolutional neural networks on CPU-FPGA shared memory system[C]. Monterey: Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2017.
|
[19] |
Qiu J T, Wang J, Yao S, et al. Going deeper with embedded FPGA platform for convolutional neural network[C]. Monterey: Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2016.
|