[1] |
林森, 赵颍. 水下光学图像中目标探测关键技术研究综述[J]. 激光与光电子学进展, 2020, 57(6):26-37.
|
|
Lin Sen, Zhao Ying. Review on key technologies of target exploration in underwater optical images[J]. Laser and Optoelectronic Progress, 2020, 57(6):26-37.
|
[2] |
于红. 水产动物目标探测与追踪技术及应用研究进展[J]. 大连海洋大学学报, 2020, 35(6):793-804.
|
|
Yu Hong. Research progress on object detection and tracking techniques utilization in aquaculture: A review[J]. Journal of Dalian Ocean University, 2020, 35(6):793-804.
|
[3] |
张胜虎, 马惠敏. 遮挡对于目标检测的影响分析[J]. 图学学报, 2020, 41(6):891-896.
|
|
Zhang Shenghu, Ma Huimin. An analysis of occlusion influence on object detection[J]. Journal of Graphics, 2020, 41(6):891-896.
|
[4] |
赵晓飞, 于双和, 李清波, 等. 基于注意力机制的水下目标检测算法[J]. 扬州大学学报(自然科学版), 2021, 24(1):62-67.
|
|
Zhao Xiaofei, Yu Shuanghe, Li Qingbo, et al. Underwater object detection algorithm based on attention mechanism[J]. Journal of Yangzhou University(Natural Science Edition), 2021, 24(1):62-67.
|
[5] |
Wei X Y, Yu L, Tian S W, et al. Underwater target detection with an attention mechanism and improved scale[J]. Multimedia Tools and Applications, 2021, 80(1):33747-33761.
doi: 10.1007/s11042-021-11230-2
|
[6] |
Redmon J, Farhadi A. YOLOv3: An incremental improvement[C]. Salt Lake City: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2018:1-12.
|
[7] |
邹梓吟, 盖绍彦, 达飞鹏, 等. 基于注意力机制的遮挡行人检测算法[J]. 光学学报, 2021, 41(15):157-165.
|
|
Zou Ziyin, Gai Shaoyan, Da Feipeng, et al. Occluded pedestrian detection algorithm based on attention mechanism[J]. Acta Optica Sinica, 2021, 41(15):157-165.
|
[8] |
Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module[C]. Munich: Proceedings of European Conference on Computer Vision, 2018:3-19.
|
[9] |
Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023.
doi: 10.1109/TPAMI.2019.2913372
pmid: 31034408
|
[10] |
Wang X L, Xiao T T, Jiang Y N, et al. Repulsion loss: Detecting pedestrians in a crowd[C]. Salt Lake City: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2018:7774-7783.
|
[11] |
Zhang S F, Wen L Y, Bian X, et al. Occlusion-aware R-CNN: Detecting pedestrians in a crowd[C]. Munich: Proceedings of European Conference on Computer Vision, 2018:637-653.
|
[12] |
张莹, 刘子龙, 万伟. 基于Faster R-CNN的无人机车辆目标检测[J]. 电子科技, 2021, 34(11):11-20.
|
|
Zhang Ying, Liu Zilong, Wan Wei. UAV vehicle target detection based on Faster R-CNN[J]. Electronic Science and Technology, 2021, 34(11):11-20.
|
[13] |
Lin W H, Zhong J X, Liu S, et al. RoIMix:Proposal-fusion among multiple images for underwater object detection[C]. Barcelona: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2020:2588-2592.
|
[14] |
Landskape D M, Nalamada T, Arasanipalai A U, et al. Rotate to attend: Convolutional triplet attention module[C]. Waikoloa: Proceedings of Conference on IEEE Winter Conference on Applications of Computer Vision, 2021:3139-3148.
|
[15] |
Wang X L, Girshick R, Gupta A, et al. Non-local neural networks[C]. Salt Lake City: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2018:7794-7803.
|
[16] |
魏郭依哲, 陈思遥, 刘玉涛, 等. 水下图像增强和修复算法综述[J]. 计算机应用研究, 2021, 38(9):2561-2569.
|
|
Wei Guoyizhe, Chen Siyao, Liu Yutao, et al. Survey of underwater image enhancement and restoration algorithms[J]. Application Research of Computers, 2021, 38(9):2561-2569.
|
[17] |
Ma Y T, Lu T, Wu Y R. Multi-scale relational reasoning with regional attention for visual question answering[C]. Milan: Proceedings of the Twenty-fifth International Conference on Pattern Recognition, 2021:5642-5649.
|
[18] |
YamashitaT, FurukawaH,Fujiyoshi H. Multiple skip connections of dilated convolution network for semantic segmentation[C]. Athens: Proceedings of the Twenty-fifth IEEE International Conference on Image Processing, 2018:1593-1597.
|
[19] |
Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031
pmid: 27295650
|
[20] |
Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]. Las Vegas: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016:779-788.
|
[21] |
Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]. Amsterdam: Proceedings of European Conference on Computer Vision, 2016:21-37.
|
[22] |
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]. Las Vegas: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778.
|
[23] |
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Institute of Electronics, Information and Communication Engineers Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2014, 14(9):1556-1561.
|