电子科技 ›› 2023, Vol. 36 ›› Issue (5): 62-70.doi: 10.16180/j.cnki.issn1007-7820.2023.05.010
史建柯,乔美英,李冰锋,赵岩
收稿日期:
2021-12-06
出版日期:
2023-05-15
发布日期:
2023-05-17
作者简介:
史建柯(1995-),男,硕士研究生。研究方向:深度学习、目标检测。|乔美英(1976-),女,博士,副教授。研究方向:机器学习、时间序列预测与故障诊断。
基金资助:
SHI Jianke,QIAO Meiying,LI Bingfeng,ZHAO Yan
Received:
2021-12-06
Online:
2023-05-15
Published:
2023-05-17
Supported by:
摘要:
针对水下目标检测任务中存在前景遮挡和背景模糊的问题,文中提出一种基于注意力机制的水下目标检测算法。首先采用图像增强算法改善图像质量。然后在非局部神经网络的相似度函数基础上,融合具有逻辑推理能力的级联相似度函数,增强网络对全局上下文特征的表达能力。随后将改进型非局部神经网络与三分支注意力融合,弥补非局部神经网络丢失的通道特征。最后利用空洞卷积模块置换三分支注意力中的池化操作,减少细粒度信息损失。实验表明,该算法在2020年全国水下目标检测大赛提供的数据集上,使基线方法检测精度由65.66%增长至68.55%,证明了所提算法的有效性。
中图分类号:
史建柯,乔美英,李冰锋,赵岩. 基于注意力机制的水下遮挡目标检测算法[J]. 电子科技, 2023, 36(5): 62-70.
SHI Jianke,QIAO Meiying,LI Bingfeng,ZHAO Yan. Underwater Occlusion Target Detection Algorithm Based on Attention Mechanism[J]. Electronic Science and Technology, 2023, 36(5): 62-70.
表7
不同检测算法检测结果"
方法 | 主干网络 | 海胆/% | 扇贝/% | 海星/% | 海参/% | mAP/% | 帧率/frames·s-1 |
---|---|---|---|---|---|---|---|
YOLOv3 | DarkNet-53 | 70.42 | 50.04 | 71.55 | 52.70 | 61.18 | 27 |
SSD300 | VGG-16 | 71.72 | 52.30 | 72.54 | 54.72 | 62.82 | 22 |
SSD512 | VGG-16 | 73.20 | 54.81 | 73.10 | 56.37 | 64.37 | 18 |
Faster R-CNN | VGG-16 | 73.35 | 54.03 | 72.52 | 55.32 | 63.81 | 13 |
Faster R-CNN | ResNet-50 | 75.10 | 57.02 | 74.17 | 56.35 | 65.66 | 12 |
Faster R-CNN | proposed | 77.14 | 60.25 | 77.60 | 59.20 | 68.55 | 10 |
表8
不同注意力机制检测结果"
方法 | 海胆/% | 扇贝/% | 海星/% | 海参/% | mAP/% | 帧率/frames·s-1 |
---|---|---|---|---|---|---|
Baseline | 75.10 | 57.02 | 74.17 | 56.35 | 65.66 | 12 |
FRANet | 74.58 | 59.86 | 75.67 | 55.28 | 66.35 | 20 |
ResNet-50+SENet | 73.51 | 60.10 | 76.20 | 58.55 | 67.09 | 10 |
ResNet-50+CBAM | 71.34 | 59.56 | 72.74 | 56.36 | 65.00 | 9 |
ResNet-50+NNNet | 75.85 | 58.26 | 73.35 | 57.17 | 66.16 | 10 |
ResNet-50+TA | 74.24 | 57.52 | 74.94 | 57.55 | 66.06 | 12 |
ResNet-50+NNNet+TA | 76.23 | 58.75 | 76.25 | 58.68 | 67.47 | 7 |
Proposed | 77.14 | 60.25 | 77.60 | 59.20 | 68.55 | 10 |
[1] | 林森, 赵颍. 水下光学图像中目标探测关键技术研究综述[J]. 激光与光电子学进展, 2020, 57(6):26-37. |
Lin Sen, Zhao Ying. Review on key technologies of target exploration in underwater optical images[J]. Laser and Optoelectronic Progress, 2020, 57(6):26-37. | |
[2] | 于红. 水产动物目标探测与追踪技术及应用研究进展[J]. 大连海洋大学学报, 2020, 35(6):793-804. |
Yu Hong. Research progress on object detection and tracking techniques utilization in aquaculture: A review[J]. Journal of Dalian Ocean University, 2020, 35(6):793-804. | |
[3] | 张胜虎, 马惠敏. 遮挡对于目标检测的影响分析[J]. 图学学报, 2020, 41(6):891-896. |
Zhang Shenghu, Ma Huimin. An analysis of occlusion influence on object detection[J]. Journal of Graphics, 2020, 41(6):891-896. | |
[4] | 赵晓飞, 于双和, 李清波, 等. 基于注意力机制的水下目标检测算法[J]. 扬州大学学报(自然科学版), 2021, 24(1):62-67. |
Zhao Xiaofei, Yu Shuanghe, Li Qingbo, et al. Underwater object detection algorithm based on attention mechanism[J]. Journal of Yangzhou University(Natural Science Edition), 2021, 24(1):62-67. | |
[5] |
Wei X Y, Yu L, Tian S W, et al. Underwater target detection with an attention mechanism and improved scale[J]. Multimedia Tools and Applications, 2021, 80(1):33747-33761.
doi: 10.1007/s11042-021-11230-2 |
[6] | Redmon J, Farhadi A. YOLOv3: An incremental improvement[C]. Salt Lake City: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2018:1-12. |
[7] | 邹梓吟, 盖绍彦, 达飞鹏, 等. 基于注意力机制的遮挡行人检测算法[J]. 光学学报, 2021, 41(15):157-165. |
Zou Ziyin, Gai Shaoyan, Da Feipeng, et al. Occluded pedestrian detection algorithm based on attention mechanism[J]. Acta Optica Sinica, 2021, 41(15):157-165. | |
[8] | Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module[C]. Munich: Proceedings of European Conference on Computer Vision, 2018:3-19. |
[9] |
Hu J, Shen L, Albanie S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023.
doi: 10.1109/TPAMI.2019.2913372 pmid: 31034408 |
[10] | Wang X L, Xiao T T, Jiang Y N, et al. Repulsion loss: Detecting pedestrians in a crowd[C]. Salt Lake City: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2018:7774-7783. |
[11] | Zhang S F, Wen L Y, Bian X, et al. Occlusion-aware R-CNN: Detecting pedestrians in a crowd[C]. Munich: Proceedings of European Conference on Computer Vision, 2018:637-653. |
[12] | 张莹, 刘子龙, 万伟. 基于Faster R-CNN的无人机车辆目标检测[J]. 电子科技, 2021, 34(11):11-20. |
Zhang Ying, Liu Zilong, Wan Wei. UAV vehicle target detection based on Faster R-CNN[J]. Electronic Science and Technology, 2021, 34(11):11-20. | |
[13] | Lin W H, Zhong J X, Liu S, et al. RoIMix:Proposal-fusion among multiple images for underwater object detection[C]. Barcelona: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2020:2588-2592. |
[14] | Landskape D M, Nalamada T, Arasanipalai A U, et al. Rotate to attend: Convolutional triplet attention module[C]. Waikoloa: Proceedings of Conference on IEEE Winter Conference on Applications of Computer Vision, 2021:3139-3148. |
[15] | Wang X L, Girshick R, Gupta A, et al. Non-local neural networks[C]. Salt Lake City: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2018:7794-7803. |
[16] | 魏郭依哲, 陈思遥, 刘玉涛, 等. 水下图像增强和修复算法综述[J]. 计算机应用研究, 2021, 38(9):2561-2569. |
Wei Guoyizhe, Chen Siyao, Liu Yutao, et al. Survey of underwater image enhancement and restoration algorithms[J]. Application Research of Computers, 2021, 38(9):2561-2569. | |
[17] | Ma Y T, Lu T, Wu Y R. Multi-scale relational reasoning with regional attention for visual question answering[C]. Milan: Proceedings of the Twenty-fifth International Conference on Pattern Recognition, 2021:5642-5649. |
[18] | YamashitaT, FurukawaH,Fujiyoshi H. Multiple skip connections of dilated convolution network for semantic segmentation[C]. Athens: Proceedings of the Twenty-fifth IEEE International Conference on Image Processing, 2018:1593-1597. |
[19] |
Ren S Q, He K M, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6):1137-1149.
doi: 10.1109/TPAMI.2016.2577031 pmid: 27295650 |
[20] | Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection[C]. Las Vegas: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016:779-788. |
[21] | Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector[C]. Amsterdam: Proceedings of European Conference on Computer Vision, 2016:21-37. |
[22] | He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]. Las Vegas: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016:770-778. |
[23] | Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Institute of Electronics, Information and Communication Engineers Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2014, 14(9):1556-1561. |
[1] | 刘玉威,曹民,冯浩甲. 基于自然语言处理的CNAS认可准则自动对标系统[J]. 电子科技, 2023, 36(5): 28-33. |
[2] | 郑玉恒,付东翔. 基于Slim-YOLOv4与嵌入式设备的无人机检测[J]. 电子科技, 2023, 36(5): 55-61. |
[3] | 骆睿鹏,冯铭科,黄鑫,邹任玲,李丹. 脑电信号预处理方法研究综述[J]. 电子科技, 2023, 36(4): 36-43. |
[4] | 崔卓栋,陈玮,尹钟. 基于增强特征融合网络的安全帽佩戴检测[J]. 电子科技, 2023, 36(4): 44-51. |
[5] | 白莹琦,帕丽旦·吐尔逊. 一种基于多任务学习的科学文献推荐算法[J]. 电子科技, 2023, 36(4): 59-64. |
[6] | 孙红,张玉香. 基于多特征门控反馈残差网络的超分辨率图像重建算法[J]. 电子科技, 2023, 36(4): 65-70. |
[7] | 唐政,张会林,马立新,刘金芝,王昊. 轻量级网络算法对输电线路上异物目标的识别[J]. 电子科技, 2023, 36(4): 71-77. |
[8] | 孙红,鹿梅珂. 融合用户行为序列预测的混合推荐算法[J]. 电子科技, 2023, 36(4): 84-89. |
[9] | 黄圆,魏云冰,童东兵,王维高. 基于VMD和改进TCN的短期光伏发电功率预测[J]. 电子科技, 2023, 36(3): 42-49. |
[10] | 卢东祥. 道路交通网络节点分配优化策略研究进展[J]. 电子科技, 2023, 36(3): 81-86. |
[11] | 左斌,李菲菲. 基于注意力机制和Inf-Net的新冠肺炎图像分割方法[J]. 电子科技, 2023, 36(2): 22-28. |
[12] | 赵文君,翟晗,张洪艳. 全变差稀疏约束深度非负矩阵分解高光谱遥感影像解混方法[J]. 电子科技, 2023, 36(2): 53-60. |
[13] | 余琼芳,牛冬阳. 基于LSTM网络的矿山压力时空混合预测[J]. 电子科技, 2023, 36(2): 67-72. |
[14] | 赵晋,李菲菲. 一种基于GAN的轻量级水墨画风格迁移模型[J]. 电子科技, 2023, 36(2): 81-86. |
[15] | 邬彤,于莲芝. 融入注意力网络的深度分解机推荐算法[J]. 电子科技, 2023, 36(1): 38-43. |
|