电子科技 ›› 2024, Vol. 37 ›› Issue (11): 62-69.doi: 10.16180/j.cnki.issn1007-7820.2024.11.009

• • 上一篇    下一篇

基于ISFO-KELM的SF6电气设备故障组分CO2浓度反演模型

黄杰1,2,3, 张英1,2, 张靖1, 王明伟2   

  1. 1.贵州大学 电气工程学院,贵州 贵阳 550025
    2.贵州电网有限责任公司 电力科学研究院,贵州 贵阳 550002
    3.贵州电网有限责任公司 毕节供电局,贵州 毕节 551700
  • 收稿日期:2023-02-16 出版日期:2024-11-15 发布日期:2024-11-21
  • 基金资助:
    国家自然科学基金(51867005);贵州省科技支撑项目(黔科合支撑2021一般365);南网科技项目(GZKJXM20210348)

A CO2 Concentration Inversion Model for SF6 Electrical Equipment Fault Components Based on ISFO-KELM

HUANG Jie1,2,3, ZHANG Ying1,2, ZHANG Jing1, WANG Mingwei2   

  1. 1. College of Electrical Engineering,Guizhou University,Guiyang 550025,China
    2. Electric Power Research Institute,Guizhou Power Grid Co., Ltd.,Guiyang 550002,China
    3. Bijie Power Supply Bureau,Guizhou Power Grid Co., Ltd.,Bijie 551700,China
  • Received:2023-02-16 Online:2024-11-15 Published:2024-11-21
  • Supported by:
    National Natural Science Foundation of China(51867005);Science and Technology Support Project in Guizhou(Qianke He Support 2021 General 365);South Network Science and Technology Project(GZKJXM20210348)

摘要:

SF6电气设备内部的分解组分可以通过可调谐吸收光谱技术进行检测,其中CO2浓度反映了设备内部的绝缘缺陷情况。因此,通过准确测量CO2浓度可以及时发现设备潜在的绝缘故障。为克服传统最小二乘法浓度反演模型稳定性较差的问题,文中基于改进的旗鱼优化算法(Improved Sailed Fish Optimizer,ISFO)与核极限学习机(Kernel Based Extreme Learning Machine,KELM)建立了ISFO-KELM气体浓度反演模型。利用多策略初始化方法、Levy随机步长、柯西变异和自适应t分布变异等技术提升了旗鱼优化算法寻优能力和跳出局部最优解能力。实验结果表明,该模型具有高精度和鲁棒性,并且在稳定性和泛化能力方面优于最小二乘法、极限学习机、反向传播(Back Propagation,BP)神经网络等传统方法,对评估SF6电气设备运行状态具有重要意义。

关键词: 可调谐吸收光谱技术, SF6电气设备, CO2浓度反演, 降噪, 拟合, 变分模态分解, 核极限学习机, 旗鱼优化器

Abstract:

The decomposition components inside SF6 electrical equipment can be detected by tunable absorption spectroscopy technique, in which the concentration of CO2 reflects the insulation defect situation inside the equipment. Therefore, potential insulation faults of the equipment can be found in time by measuring the CO2 concentration accurately. To overcome the problem of poor stability of traditional least squares concentration inversion model, ISFO-KELM gas concentration inversion model based on ISFO (Improved Sailed Fish Optimizer) and KELM (Kernel Based Extreme Learning Machine) is established in this study. The optimization ability and the ability to jump out of local optimal solution of ISFO are improved by using multi-strategy initialization method, Levy random step length, Cauchy mutation and adaptive t-distribution mutation techniques. The experimental results show that this model has high accuracy and robustness, and is superior to traditional methods such as least squares method, extreme learning machine, BP (Back Propagation) neural network in stability and generalization ability, which has important significance for evaluating the operation state of SF6 electrical equipment.

Key words: tunable diode laser absorption spectroscopy, SF6 electrical equipment, CO2 concentration inversion, denoising, curve fitting, variational mode decomposition, kernel based extreme learning machine, sailfish optimizer

中图分类号: 

  • TP183