电子科技 ›› 2025, Vol. 38 ›› Issue (1): 6-13.doi: 10.16180/j.cnki.issn1007-7820.2025.01.002

• • 上一篇    下一篇

改进的多目标樽海鞘算法求解车间调度问题

魏郁, 万卫兵()   

  1. 上海工程技术大学 电子电气工程学院, 上海 201620
  • 收稿日期:2023-05-17 修回日期:2023-05-29 出版日期:2025-01-15 发布日期:2025-01-06
  • 通讯作者: 万卫兵(1969-),男, E-mail:wbwan@sues.edu.cn,博士,副教授。研究方向:模式识别与智能系统。
  • 作者简介:魏郁(1998-),女,硕士研究生。研究方向:群体智能算法。
  • 基金资助:
    江西省科技厅2022年重大研发专项03及5G(20224ABC03A15)

Improved Multi-Objective Salp Swarm Algorithm for Solving Flexible Job Shop Scheduling Problem

WEI Yu, WAN Weibing()   

  1. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
  • Received:2023-05-17 Revised:2023-05-29 Online:2025-01-15 Published:2025-01-06
  • Supported by:
    Jiangxi Science and Technology Department 2022 Major R&D Special 03 and 5G(20224ABC03A15)

摘要:

针对柔性作业车间调度问题,文中提出一种结合衰减因子和交叉变异算子的改进型多目标樽海鞘优化算法。为便于算法求解,使用等长的双层编码方式,并引入基于升序排列规则的转换机制,实现个体位置向量与调度解之间的转换。采用混沌映射和基于规则的混合方法生成较优的初始种群。在个体位置更新中引入衰减因子和交叉变异算子增强算法的全局搜索能力。使用调度问题标准算例和实际算例测试算法求解性能,并与其他算法进行对比。结果表明,改进型多目标樽海鞘算法求解能力较原算法具有明显提升,验证了改进算法求解柔性作业车间调度问题的有效性。

关键词: 多目标樽海鞘算法, 双目标柔性作业车间调度, 双层编码, 升序排列规则, 离散化调度, 混沌映射, 衰减因子, 交叉算子, 变异算子

Abstract:

In view of the flexible job shop scheduling problem, an improved multi-objective salp swarm algorithm combining decay factor and cross-variance operator is proposed. To facilitate the solution of the algorithm, a two-layer coding method of equal length is used and a conversion mechanism based on ascending order rules is introduced to achieve the conversion between individual position vectors and scheduling solutions. Chaotic mapping and a hybrid rule-based approach are used to generate a better initial population. A decay factor and a cross-variance operator are introduced in the position update of individuals to enhance the global search capability of the algorithm. The algorithm's solution performance is tested using standard and real-life examples of the scheduling problem and compared with other algorithms. The results show that the solution capability of the proposed improved multi-objective salp swarm algorithm is significantly improved over the original algorithm, verifying the effectiveness of the improved algorithm in solving the flexible job shop scheduling problem.

Key words: multi-objective salp swarm algorithm, bi-objective flexible job shop scheduling, two-layer coding, ascending order rules, discretized scheduling, chaotic mapping, decay factor, crossover operator, variational operator

中图分类号: 

  • TP301.6