[1] |
Brucker P, Schlie R. Job-shop scheduling with multipurpose machines[J]. Computing, 1990, 45(10):369-375.
|
[2] |
Ghasemi A, Ashoori A, Heavey C. Evolutionary learning based simulation optimization for stochastic job shop scheduling problems[J]. Applied Soft Computing, 2021, 106(2):107309-107315.
|
[3] |
Ding H, Gu X. Improved particle swarm optimization algorithm based novel encoding and decoding schemes for flexible job shop scheduling problem[J]. Computers & Operations Research, 2020, 121(7):104951-104961.
|
[4] |
Fan J, Shen W, Gao L, et al. A hybrid Jaya algorithm for solving flexible job shop scheduling problem considering multiple critical paths[J]. Journal of Manufacturing Systems, 2021, 60(11):298-311.
|
[5] |
Li J Q, Liu Z M, Li C, et al. Improved artificial immune system algorithm for type-2 fuzzy flexible job shop scheduling problem[J]. IEEE Transactions on Fuzzy Systems, 2020, 29(11):3234-3248.
|
[6] |
Zhang G, Hu Y, Sun J, et al. An improved genetic algorithm for the flexible job shop scheduling problem with multiple time constraints[J]. Swarm and Evolutionary Computation, 2020, 54(3):100664-100670.
|
[7] |
Caldeira R H, Gnanavelbabu A, Vaidyanathan T. An effective backtracking search algorithm for multi-objective flexible job shop scheduling considering new job arrivals and energy consumption[J]. Computers & Industrial Engineering, 2020, 149(10):106863-106877.
|
[8] |
陈强, 王宇嘉, 林炜星, 等. 改进粒子群算法求解分布式柔性车间调度问题[J]. 电子科技, 2021, 34(10):63-68.
|
|
Chen Qiang, Wang Yujia, Lin Weixing, et al. An improved particle swarm optimization algorithm for distributed and flexible job-shop scheduling problem[J]. Electronic Science and Technology, 2021, 34(10):63-68.
|
[9] |
邴孝锋, 陶翼飞, 董圆圆, 等. 求解改进布谷鸟算法的置换流水车间调度问题[J]. 电子科技, 2019, 32(10):60-64.
|
|
Bing Xiaofeng, Tao Yifei, Dong Yuanyuan, et al. Solving theproblem of replacement flow shop scheduling based on improved cuckoo algorithm[J]. Electronic Science and Technology, 2019, 32(10):60-64.
|
[10] |
Ding H, Gu X. Hybrid of human learning optimization algorithm and particle swarm optimization algorithm with scheduling strategies for the flexible job-shop scheduling problem[J]. Neurocomputing, 2020, 41(4):313-332.
|
[11] |
Mirjalili S, Gandomi A H, Mirjalili S Z, et al. Salp swarm algorithm:A bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114:163-191.
|
[12] |
Faris H, Mafarja M M, Heidari A A, et al. An efficient binary salp swarm algorithm with crossover scheme for feature selection problems[J]. Knowledge-Based Systems, 2018, 154(8):43-67.
|
[13] |
邢致恺, 贾鹤鸣, 宋文龙. 基于莱维飞行樽海鞘群优化算法的多阈值图像分割[J]. 自动化学报, 2021, 47(2):363-377.
|
|
Xing Zhikai, Jia Heming, Song Wenlong. Levy flight trajectory-based salp swarm algorithm for multilevel thresholding image segmentation[J]. Acta Automatic Sinica, 2021, 47(2):363-377.
|
[14] |
刘景森, 袁蒙蒙, 李煜. 基于改进樽海鞘群算法求解工程优化设计问题[J]. 系统仿真学报, 2021, 33(4):854-866.
doi: 10.16182/j.issn1004731x.joss.19-0645
|
|
Liu Jingsen, Yuan Mengmeng, Li Yu. Solvingeng ineering optimization design problems based on improved salp swarm algorithm[J]. Journal of System Simulation, 2021, 33(4):854-866.
doi: 10.16182/j.issn1004731x.joss.19-0645
|
[15] |
Sun Z X, Hu R, Qian B, et al. Salp swarm algorithm based on blocks on critical path for reentrant job shop scheduling problems[C]. Wuhan:Intelligent Computing Theories and Application: The Fourteenth International Conference, 2018:638-648.
|
[16] |
Gu Y M, Chen M, Wang L. A self-learning discrete salp swarm algorithm based on deep reinforcement learning for dynamic job shop scheduling problem[J]. Applied Intelligence, 2023, 53(2):18925-18958.
|
[17] |
Liu C, Yao Y, Zhu H. Hybrid salp swarm algorithm for solving the green scheduling problem in a double-flexible job shop[J]. Applied Sciences, 2021, 12(1):205-210.
|
[18] |
赵文超, 郭鹏, 王海波, 等. 改进樽海鞘群算法求解柔性作业车间调度问题[J]. 智能系统学报, 2022, 17(2):376-386.
|
|
Zhao Wenchao, Guo Peng, Wang Haibo, et al. Improved slap swarm algorithm for scheduling of flexible job shop[J]. CAAI Trasactions on Intelligent Systems, 2022, 17(2):376-386.
|
[19] |
董君, 叶春明, 万孟然. 考虑可再生能源的可重入混合流水车间调度问题[J]. 计算机集成制造系统, 2022, 28(4):1112-1128.
|
|
Dong Jun, Ye Chunming, Wan Mengran. Reentrant hybrid flow shop scheduling problem with renewable energy[J]. Computer Integrated Manufacturing Systems, 2022, 28(4):1112-1128.
|
[20] |
Bingol H, Alatas B. Chaotic league championship algorithms[J]. Arabian Journal for Science and Engineering, 2016, 41(2):5123-5147.
|
[21] |
Dos Santos Coelho L, Mariani V C. Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization[J]. Expert Systems with Applications, 2008, 34(3):1905-1913.
|
[22] |
卓然, 王未卿. 混沌映射与动态学习的自适应樽海鞘群算法[J]. 计算机工程与设计, 2021, 42(7):1963-1972.
|
|
Zhuo Ran, Wang Weiqing. Self-adaptive salp swarm algorithm with chaotic mapping and dynamic learning[J]. Computer Engineering and Design, 2021, 42(7):1963-1972.
|
[23] |
Mirjalili S, Saremi S, Mirjalili S M, et al. Multi-objective grey wolf optimizer:A novel algorithm for multi-criterion optimization[J]. Expert Systems with Applications, 2016, 47(10):106-119.
|
[24] |
Mirjalili S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems[J]. Neural Computing and Applications, 2016, 27(10):1053-1073.
|