[1] |
Tong Y, Zeng Y, Zhou Z, et al. A unified approach to route planning for shared mobility[J]. Proceedings of the VLDB Endowment, 2018, 11(11):1633-1682.
|
[2] |
陈冠宇, 孙鹏, 廖梦琛, 等. 基于全局更新规则蚁群优化的决策实体配置问题求解方法[J]. 计算机应用研究, 2019, 36(10):2977-2981.
|
|
Chen Guanyu, Sun Peng, Liao Mengchen, et al. Solving method for decision-makers configuration problem based on global update rule of ant colony algorithm[J]. Application Research of Computers, 2019, 36(10):2977-2981.
|
[3] |
Luo Q, Wang H, Zheng Y, et al. Research on path planning of mobile robot based on improved ant colony algorithm[J]. Neural Computing and Applications, 2020, 32(4):1555-1566.
|
[4] |
Deng W, Xu J, Zhao H. An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem[J]. IEEE Access, 2019, 7(5):20281-20292.
|
[5] |
Miao C, Chen G, Yan C, et al. Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm[J]. Computers & Industrial Engineering, 2021, 156(8):197-230.
|
[6] |
Khorram B, Yazdi M. A new optimized thresholding method using ant colony algorithm for MR brain image segmentation[J]. Journal of Digital Imaging, 2019, 32(7):162-174.
|
[7] |
唐慧玲, 唐恒书, 朱兴亮. 基于改进蚁群算法的低碳车辆路径问题研究[J]. 中国管理科学, 2021, 29(7):118-127.
|
|
Tang Huiling, Tang Hengshu, Zhu Xingliang. Research on low-carbon vehicle routing problem based on modified ant colony algorithm[J]. Chinese Journal of Management Science, 2021, 29(7):118-127.
|
[8] |
王志中. 基于改进蚁群算法的移动机器人路径规划研究[J]. 机械设计与制造, 2018, 13(1):242-244.
|
|
Wang Zhizhong. Path planning of molile robot based on improved ant colony algorithm[J]. Machinery Design & Manufacture, 2018, 13(1):242-244.
|
[9] |
Yi N, Xu J, Yan L, et al. Task optimization and scheduling of distributed cyber-physical system based on improved ant colony algorithm[J]. Future Generation Computer Systems, 2020, 109(15):134-148.
|
[10] |
赵又群, 闫茜, 葛召浩, 等. 基于改进蚁群算法的汽车避障路径规划[J]. 重庆理工大学学报(自然科学), 2020, 34(4):1-10.
|
|
Zhao Youqun, Yan Xi, Ge Zhaohao, et al. Vehicle obstacle avoidance path planning based on improved ant colony algorithm[J]. Journal of Chongqing University of Technology(Natural Science), 2020, 34(4):1-10.
|
[11] |
Liu Y, Cao B. A novel ant colony optimization algorithm with Levy flight[J]. IEEE Access, 2020, 8(1):672-679.
|
[12] |
Jiao Z, Ma K, Rong Y, et al. A path planning method using adaptive polymorphic ant colony algorithm for smart wheelchairs[J]. Journal of Computational Science, 2018, 25(5):50-57.
|
[13] |
刘雨青, 向军, 曹守启. 基于改进蚁群算法的水下自主航行机器人路径规划[J]. 计算机工程与科学, 2022, 44(3):536-597.
|
|
Liu Yuqing, Xiang Jun, Cao Shouqi. AUV path planning based on improved ant colony algorithm[J]. Computer Engineering & Science, 2022, 44(3):536-597.
|
[14] |
Ning J, Zhang Q, Zhang C, et al. A best-path-updating information-guided ant colony optimization algorithm[J]. Information Sciences, 2018, 433(3):142-162.
|
[15] |
王雷, 石鑫. 基于改进蚁群算法的移动机器人动态路径规划[J]. 南京理工大学学报, 2019, 43(6):700-707.
|
|
Wang Lei, Shi Xin. Dynamic path planning of mobile robot based on improved ant colony algorithm[J]. Journal of Nanjing University of Science and Technology, 2019, 43(6):700-707.
|
[16] |
Peng J, Zhao S, Dong J, et al. Applying ant colony algorithm to identify ecological security patterns in megacities[J]. Environmental Modelling & Software, 2019, 117(4):214-222.
|
[17] |
朱艳, 游晓明, 刘升, 等. 基于改进蚁群算法的机器人路径规划问题研究[J]. 计算机工程与应用, 2018, 54(19):129-134.
doi: 10.3778/j.issn.1002-8331.1706-0080
|
|
Zhu Yan, You Xiaoming, Liu Sheng, et al. Research for robot path planning problem based on improved ant colony system algorithm[J]. Computer Engineering and Applications, 2018, 54(19):129-134.
|
[18] |
于振中, 李强, 樊启高. 智能仿生算法在移动机器人路径规划优化中的应用综述[J]. 计算机应用研究, 2019, 36(11):3210-3219.
|
|
Yu Zhenzhong, Li Qiang, Fan Qigao. Survey on application of bioinspired intelligent algorithms in path planning optimization of mobile robots[J]. Application Research of Computers, 2019, 36(11):3210-3219.
|
[19] |
Ning J, Zhang C, Sun P, et al. Comparative study of ant colony algorithms for multi-objective optimization[J]. Information, 2018, 10(1):11-19.
|