电子科技 ›› 2025, Vol. 38 ›› Issue (1): 23-28.doi: 10.16180/j.cnki.issn1007-7820.2025.01.004

• • 上一篇    下一篇

基于蚁群算法的智能路径规划

佟云昊, 席志红()   

  1. 哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001
  • 收稿日期:2023-04-27 修回日期:2023-06-14 出版日期:2025-01-15 发布日期:2025-01-06
  • 通讯作者: 席志红(1965-),女, E-mail:xizhihong@hrbeu.edu.cn,博士,教授。研究方向:机器视觉、图像处理。
  • 作者简介:佟云昊(1997-),男,硕士研究生。研究方向:视觉SLAM、路径规划。
  • 基金资助:
    国家自然科学基金(62001136)

Intelligent Path Planning Based on Ant Colony Algorithm

TONG Yunhao, XI Zhihong()   

  1. College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China
  • Received:2023-04-27 Revised:2023-06-14 Online:2025-01-15 Published:2025-01-06
  • Supported by:
    National Natural Science Foundation of China(62001136)

摘要:

针对移动机器人在完成自身定位和地图构建后难以合理规划路径,造成移动机器人无序运动和资源浪费问题,文中采用蚁群算法实现移动机器人路径规划。蚁群算法是一种求解问题中最佳路径的概率型算法,但在通用蚁群算法中,蚁群算法的所有参数均不变,导致蚁群算法的结果依赖算法中设定的信息素参数。针对上述问题,对蚁群算法的参数和信息素的分配进行改进,通过在每次迭代中改变信息素挥发系数和信息素更新标准以及结合启发因素改进信息素更新标准。设置可调节信息素挥发因子增加算法的自适应性,根据有意义的参数空间,通过在不同环境下对比传统蚁群算法和改进蚁群算法的路径规划结果。改进蚁群算法路径长度分别下降4.48%和8.54%,均未产生路径交叉结点,较好地实现了移动机器人合理路径规划的预期效果。

关键词: 移动机器人, 蚁群算法, 路径规划, 概率型算法, 最佳路径, 信息素挥发系数, 信息素更新标准, 参数空间

Abstract:

In view of the problem that it is difficult to reasonably plan the path after the mobile robot completes its self-positioning and map construction, which leads to the disordered movement of the mobile robot and the waste of resources, ant colony algorithm is adopted to realize the path planning of mobile robot in this study. Ant colony algorithm is a probabilistic algorithm to solve the optimal path in a problem. However, in the general ant colony algorithm, all parameters of the ant colony algorithm are unchanged, resulting in the result of the ant colony algorithm dependent on the pheromone parameters set in the algorithm. In order to solve the above problems, the parameters of ant colony algorithm and pheromone allocation are improved, and the pheromone update standard is improved by changing the pheromone volatility coefficient and pheromone update standard in each iteration and combining with heuristic factors. Setting the adjustable pheromone volatile factor increases the adaptability of the algorithm. According to the meaningful parameter space, the path planning results of the traditional ant colony algorithm and the improved ant colony algorithm are compared under different environments. The path length of the improved ant colony algorithm is reduced by 4.48% and 8.54%, respectively, and no path crossover nodes are generated, which achieves the expected effect of reasonable path planning for mobile robots.

Key words: mobile robot, ant colony algorithm, path planning, probabilistic algorithm, optimal path, pheromone volatilization coefficient, pheromone renewal standard, parameter space

中图分类号: 

  • TP273.5