电子科技 ›› 2025, Vol. 38 ›› Issue (1): 29-36.doi: 10.16180/j.cnki.issn1007-7820.2025.01.005

• • 上一篇    下一篇

融合模仿学习的双足机器人全向行走步态生成方法

冯振1,2, 牟海明1,2, 薛杰1,2, 李清都1()   

  1. 1.上海理工大学 机器智能研究院,上海 200093
    2.上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2023-05-18 修回日期:2023-06-14 出版日期:2025-01-15 发布日期:2025-01-06
  • 通讯作者: 李清都(1980-),男, E-mail:liqd@usst.edu.cn,博士,教授。研究方向:仿生机器人理论与技术、复杂系统的动力学与控制等。
  • 作者简介:冯振(1997-),男,硕士研究生。研究方向:强化学习、机器人运动控制等。
    牟海明(1989-),男,博士。研究方向:机器人运动控制、强化学习等。
  • 基金资助:
    东方学者计划(TP2019064)

Omnidirectional Gait Generation Method for Biped Robot with Fusion of Imitation Learning

FENG Zhen1,2, MOU Haiming1,2, XUE Jie1,2, LI Qingdu1()   

  1. 1. Institute of Machine Intelligence,University of Shanghai for Science and Technology,Shanghai 200093,China
    2. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2023-05-18 Revised:2023-06-14 Online:2025-01-15 Published:2025-01-06
  • Supported by:
    Oriental Scholars Program(TP2019064)

摘要:

由于双足机器人具有复杂的高维动力学和高度动态特性,因此难以实现全向步态。为了实现双足机器人全向行走,文中基于深度强化学习算法提出了一种融合模仿学习的双足机器人步态训练方法。根据专家经验和双足行走具有周期性的特点,设计了可以实现不同步态风格的周期对称函数进行模仿学习。为了使双足机器人具有全向行走能力,使用ROS(Robot Operating System)中的脚步规划器生成目标落脚点进行模仿学习,并在自主设计的双足机器人上对所提方法进行验证。实验结果表明,所提方法可实现双足机器人前向、侧向、对角线和转向4种步态模式,实现了双足机器人的全向步态,并且可实现不同风格的周期对称步态。

关键词: 强化学习, 模仿学习, 专家经验, 周期步态, 全向运动, 转向运动, 对角线运动, 双足机器人

Abstract:

Due to the complex high-dimensional dynamics and highly dynamic characteristics of bipedal robots, achieving omnidirectional gait is a difficult problem. In order to achieve omnidirectional walking of bipedal robots, this study proposes a gait training method of biped robot based on deep reinforcement learning. Based on expert experience and the periodicity of bipedal walking, periodic symmetric functions that can achieve different gait styles are designed for imitation learning. In order to make the bipedal robot capable of omnidirectional walking, the footstep planner in ROS (Robot Operating System) is used to generate target foothold points for imitation learning. The proposed method is validated on a self-designed bipedal robot. The experimental results show that the proposed method can realize four gait modes of biped robot including forward, side, diagonal and turn, and realize omnidirectional gait of biped robot, and can realize different styles of cycles.

Key words: reinforcement learning, imitation learning, expert experience, periodic gait, omnidirectional movement, steering movement, diagonal movement, bipedal robot

中图分类号: 

  • TP18