[1] |
黄艳龙, 徐德, 谭民. 机器人运动轨迹的模仿学习综述[J]. 自动化学报, 2022, 48(2):315-334.
|
|
Huang Yanlong, Xu De, Tan Min. On imitation learning of robot movement trajectories:A survey[J]. ACTA Automatica Sinica, 2022, 48(2):315-334.
|
[2] |
Xing B, Liu Y, Wang Z, et al. Dynamic walking locomotion framework based on impulse force design and ZMP principle[C]. Hefei: Chinese Control and Decision Conference, 2022:1995-2000.
|
[3] |
Song H, Peng W Z, Kim J H. Partition-aware stability control for humanoid robot push recovery with whole-body capturability[J]. Journal of Mechanisms and Robotics, 2023, 16(1):11005-11012.
|
[4] |
Kuindersma S, Permenter F, Tedrake R. An efficiently solvable quadratic program for stabilizing dynamic locomotion[C]. Hong Kong: IEEE International Conference on Robotics and Automation, 2014:2589-2594.
|
[5] |
Dai H, Valenzuela A, Tedrake R. Whole-body motion planning with centroidal dynamics and full kinematics[C]. Madrid: IEEE-RAS International Conference on Humanoid Robots, 2014:295-302.
|
[6] |
张佳鹏, 李琳, 朱叶. 基于强化学习的无人驾驶车辆行为决策方法研究进展[J]. 电子科技, 2021, 34(5):66-71.
|
|
Zhang Jiapeng, Li Lin, Zhu Ye. A review of research on decision-making methods of autonomous vehicle based on reinforcement learning[J]. Electronic Science and Technology, 2021, 34(5):66-71.
|
[7] |
董豪, 杨静, 李少波, 等. 基于深度强化学习的机器人运动控制研究进展[J]. 控制与决策, 2022, 37(2):278-292.
|
|
Dong Hao, Yang Jing, Li Shaobo, et al. Research progress of robot motion control based on deep reinforcement learning[J]. Control and Decision, 2022, 37(2):278-292.
|
[8] |
Peng X B, Berseth G, Yin K, et al. Deeploco:Dynamic locomotion skills using hierarchical deep reinforcement learning[J]. ACM Transactions on Graphics, 2017, 36(4):1-13.
|
[9] |
Liu C, Lonsberry A G, Nandor M J, et al. Implementation of deep deterministic policy gradients for controlling dynamic bipedal walking[J]. Biomimetics, 2019, 4(1):28-30.
|
[10] |
Li Z, Cheng X, Peng X B, et al. Reinforcement learning for robust parameterized locomotion control of bipedal robots[C]. Xi'an: IEEE International Conference on Robotics and Automation, 2021:2811-2817.
|
[11] |
Siekmann J, Godse Y, Fern A, et al. Sim-to-real learning of all common bipedal gaits via periodic reward composition[C]. Xi'an: IEEE International Conference on Robotics and Automation, 2021:7309-7315.
|
[12] |
Rodriguez D, Behnke S. DeepWalk:Omnidirectional bipedal gait by deep reinforcement learning[C]. Xi'an: IEEE International Conference on Robotics and Automation, 2021:3033-3039.
|
[13] |
Peng X B, Coumans E, Zhang T, et al. Learning agile robotic locomotion skills by imitating animals[J]. Science and Systems, 2020, 47(10):117-120.
|
[14] |
Ratliff N, Bagnell J A, Srinivasa S S. Imitation learning for locomotion and manipulation[C]. Pittsburgh: IEEE-RAS International Conference on Humanoid Robots, 2007:392-397.
|
[15] |
Ross S, Gordon G J, Bagnell J A. A reduction of imitation learning and structured prediction to no-regret online learning[C]. Fort Lauderdale: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 2011:627-635.
|
[16] |
Ho J, Ermon S. Generative adversarial imitation learning[J]. Advances in Neural Information Processing Systems, 2016, 29(9):4565-4573.
|
[17] |
Xie Z, Berseth G, Clary P, et al. Feedback control for cassie with deep reinforcement learning[C]. Madrid: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2018:1241-1246.
|
[18] |
Peng X B, Abbeel P, Levine S, et al. Deepmimic:Example-guided deep reinforcement learning of physics-based character skills[J]. ACM Transactions on Graphics, 2018, 37(4):1-14.
|
[19] |
Wu Q, Zhang C, Liu Y. Custom sine waves are enough for imitation learning of bipedal gaits with different styles[C]. Nanjing: IEEE International Conference on Mechatronics and Automation, 2022:499-505.
|
[20] |
战忠丽, 王强, 陈显亭. 强化学习的模型、算法及应用[J]. 电子科技, 2011, 24(1):47-49.
|
|
Zhan Zhongli, Wang Qiang, Chen Xianting. Rinforcement learning models,algorithms and its application[J]. Electronic Science and Technology, 2011, 24(1):47-49.
|