[1] |
Fried E I, Flake J K, Robinaugh D J. Revisiting the theoretical and methodological foundations of depression measurement[J]. Nature Reviews Psychology, 2022, 1(6):358-368.
doi: 10.1038/s44159-022-00050-2
pmid: 38107751
|
[2] |
陈方方, 吴明飞, 张佳俐. 认知情绪调节策略对青少年单相抑郁和双相抑郁的影响[J]. 中华行为医学与脑科学杂志, 2022, 31(12):1086-1091.
|
|
Chen Fangfang, Wu Mingfei, Zhang Jiali. The impact of cognitive emotion regulation strategies on unipolar and bipolar depression in adolescents[J]. Chinese Journal of Behavioral Medicine and Brain Science, 2022, 31(12):1086-1091.
|
[3] |
Dubovsky S L, Ghosh B M, Serotte J C, et al. Psychotic depression:Diagnosis,differential diagnosis and treatment[J]. Psychotherapy and Psychosomatics, 2021, 90(3):160-177.
doi: 10.1159/000511348
pmid: 33166960
|
[4] |
Carrozzino D, Patierno C, Fava G A, et al. The hamilton rating scales for depression:A critical review of clinimetric properties of different versions[J]. Psychotherapy and Psychosomatics, 2020, 89(3):133-150.
doi: 10.1159/000506879
pmid: 32289809
|
[5] |
Ubukata S, Ueda K, Fujimoto G, et al. Extracting apathy from depression syndrome in traumatic brain injury by using a clustering method[J]. The Journal of Neuropsychiatry and Clinical Neurosciences, 2022, 34(2):158-167.
|
[6] |
Stasak B, Joachim D, Epps J. Breaking age barriers with automatic voice-based depression detection[J]. IEEE Pervasive Computing, 2022, 21(2):10-19.
|
[7] |
Haick H, Tang N. Artificial intelligence in medical sensors for clinical decisions[J]. ACS Nano, 2021, 15(3):3557-3567.
doi: 10.1021/acsnano.1c00085
pmid: 33620208
|
[8] |
Huang Z, Epps J, Joachim D, et al. Natural language processing methods for acoustic and landmark event-based features in speech-based depression detection[J]. IEEE Journal of Selected Topics in Signal Processing, 2019, 14(2):435-448.
|
[9] |
Calić G, Petrović-Lazić M, Mentus T, et al. Acoustic features of voice in adults suffering from depressio[J]. Psihološka Istraživanja, 2022, 25(2):183-203.
|
[10] |
Ding Y, Zhong S, Hua L. Automatic recognition of student emotions based on deep neural network and its application in depression detection[J]. Journal of Medical Imaging and Health Informatics, 2020, 10(11):2634-2641.
|
[11] |
Zhuang F, Qi Z, Duan K, et al. A comprehensive survey on transfer learning[J]. Proceedings of the IEEE, 2020, 109(1):43-76.
|
[12] |
Long M, Cao Y, Wang J, et al. Learning transferable features with deep adaptation networks[C]. Lille: International Conference on Machine Learning, 2015:97-105.
|
[13] |
Cai H, Yuan Z, Gao Y, et al. A multi-modal open dataset for mental-disorder analysis[J]. Scientific Data, 2022, 9(1):178-178.
doi: 10.1038/s41597-022-01211-x
pmid: 35440583
|
[14] |
Nguyen M T, Lin W W, Huang J H. Heart sound classification using deep learning techniques based on Log-Mel spectrogram[J]. Circuits,Systems and Signal Processing, 2023, 42(1):344-360.
|
[15] |
Park J, Moon N. Design and implementation of attention depression detection model based on multimodal analysis[J]. Sustainability, 2022, 14(6):1-15.
|
[16] |
詹雁, 张娟. 一种结构感知损失的域适应深度估计方法[J]. 电子科技, 2020, 33(12):12-16.
|
|
Zhan Yan, Zhang Juan. A domain adaptive depth estimation method for structural perception loss[J]. Electronic Science and Technology, 2020, 33(12):12-16.
|
[17] |
Finjan R H, Rasheed A S, Hashim A A, et al. Arabic handwritten digits recognition based on convolutional neural networks with ResNet-34 model[J]. Indonesian Journal of Electrical Engineering and Computer Science, 2021, 21(1):174-178.
|
[18] |
林潮威, 李菲菲, 陈虬. 基于深度卷积特征的场景全局与局部表示方法[J]. 电子科技, 2022, 35(4):20-27.
|
|
Lin Chaowei, Li Feifei, Chen Qiu. Globaland local scene representation method based on deep convolutional features[J]. Electronic Science and Technology, 2022, 35(4):20-27.
|
[19] |
Ganin Y, Ustinova E, Ajakan H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1):2096-2030.
|
[20] |
Kobak D, Linderman G C. Initialization is critical for preserving global data structure in both t-SNE and UMAP[J]. Nature Biotechnology, 2021, 39(2):156-157.
|