[1] |
Liang J, Cao J, Sun G, et al. Swinir:Image restoration using swin transformer[C]. Montreal: Proceedings of the IEEE/CVF International Conference on Computer Vision,2021:1833-1844.
|
[2] |
Niu B, Wen W, Ren W, et al. Single image super-resolution via a holistic attention network[C]. Glasgow:Computer Vision-ECCV: The Sixteenth European Conference,2020:191-207.
|
[3] |
吕佳, 许鹏程. 多尺度残差特征融合的轻量级真实图像超分辨率重建[J]. 光电子·激光, 2023, 34(2):120-131.
|
|
Lü Jia, Xu Pengcheng. Lightweight real-world image super-resolution reconstruction based on multi-scale residual feature aggregation[J]. Journal of Optoelectronics·Laser, 2023, 34(2):120-131.
|
[4] |
Chen Y, Liu L, Phonevilay V, et al. Image super-resolution reconstruction based on feature map attention mechanism[J]. Applied Intelligence, 2021, 51(7):4367-4380.
|
[5] |
秦兴, 高晓琪, 陈滨. 基于压缩卷积神经网络的图像超分辨率算法[J]. 电子科技, 2020, 33(5):1-8.
|
|
Qin Xing, Gao Xiaoqi, Chen Bin. Image super-resolution algorithm based on squeeze net convolution neural network[J]. Electronic Science and Technology, 2020, 33(5):1-8.
|
[6] |
Chakrabarti A, Rajagopalan A N, Chellappa R. Super-resolution of face images using kernel PCA-based prior[J]. IEEE Transactions on Multimedia, 2007, 9(4):888-892.
|
[7] |
Daihong J, Sai Z, Lei D, et al. Multi-scale generative adversarial network for image super-resolution[J]. Soft Computing, 2022, 26(8):3631-3641.
|
[8] |
Zhao H, Gallo O, Frosio I, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2016, 3(1):47-57.
|
[9] |
Ren T, Xu H, Jiang G, et al. Reinforced swin-convs transformer for simultaneous underwater sensing scene image enhancement and super-resolution[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60(9):1-16.
|
[10] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Las Vegas: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2016:770-778.
|
[11] |
王欢, 吴成东, 迟剑宁, 等. 联合多任务学习的人脸超分辨率重建[J]. 中国图象图形学报, 2020, 25(2):229-240.
|
|
Wang Huan, Wu Chengdong, Chi Jianning, et al. Face super-resolution reconstruction based on multitask joint learning[J]. Journal of Image and Graphics, 2020, 25(2):229-240.
|
[12] |
Dong C, Loy C C, He K, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 38(2):295-307.
|
[13] |
Zhang Y, Wu Y, Chen L. MSFSR:A multi-stage face super-resolution with accurate facial representation via enhanced facial boundaries[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,2020:504-505.
|
[14] |
高志军, 冯娇娇. 基于生成对抗网络的煤矿工人脸图像超分辨方法[J]. 黑龙江科技大学学报, 2022, 32(6):828-835.
|
|
Gao Zhijun, Feng Jiaojiao. Super-resolution method of miners'face image based on generative adversarial network[J]. Journal of Heilongjiang University of Science and Technology, 2022, 32(6):828-835.
|
[15] |
雷鹏程, 刘丛, 唐坚刚, 等. 分层特征融合注意力网络图像超分辨率重建[J]. 中国图象图形学报, 2020, 25(9):1773-1786.
|
|
Lei Pengcheng, Liu Cong, Tang Jiangang, et al. Hierarchical feature fusion attention network for image super-resolution reconstruction[J]. Journal of Image and Graphics, 2020, 25(9):1773-1786.
|
[16] |
Nazeri K, Thasarathan H, Ebrahimi M. Edge-informed single image super-resolution[C]. Seoul: Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops,2019:3275-3284.
|
[17] |
Ma C, Rao Y, Cheng Y, et al. Structure-preserving super resolution with gradient guidance[C]. Seattle: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:7769-7778.
|
[18] |
Ji Y, Jiang P, Shi J, et al. Information-growth swin transformer network for image super-resolution[C]. Bordeaux: IEEE International Conference on Image Processing,2022:3993-3997.
|
[19] |
Hui Z, Wang X, Gao X. Fast and accurate single image super-resolution via information distillation network[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2018:723-731.
|