[1] |
Song Y, Li M, Luo X, et al. Improved symmetric and nonnegative matrix factorization models for undirected,sparse and large-scaled networks:A triple factorization-based approach[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5):3006-3017.
|
[2] |
Li M, Song Y, Wang C J. An improved non-negative latent factor model via momentum-based additive gradient descent method[C]. Shanghai: The Fortieth Chinese Control Conference,2021:3409-3414.
|
[3] |
Li M, Sheng L Q, Song Y, et al. An enhanced matrix completion method based on non-negative latent factors for recommendation system[J]. Expert Systems with Applications, 2022, 201(9):1-11.
|
[4] |
Luo X, Zhou M, Xia Y. An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems[J]. IEEE Transactions on Industrial Informatics, 2014, 10(2):1273-1284.
|
[5] |
Dai X G, Zhang N, Zhang K K, et al. Weighted nonnegative matrix factorization for image inpainting and clustering[J]. International Journal of Computational Intelligence Systems, 2020, 13(1):734-743.
|
[6] |
Luo X, Liu Z G, Li S, et al. A fast non-negative latent factor model based on generalized momentum method[J]. IEEE Transactions on Systems, Man and Cybernetics:Systems, 2021, 51(1):610-620.
|
[7] |
Luo X, Zhou M C, Li S, et al. A nonnegative latent factor model for large-scale sparse matrices in recommender systems via alternating direction method[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(3):579-592.
doi: 10.1109/TNNLS.2015.2415257
pmid: 26011893
|
[8] |
Luo X, Yuan Y, Zhou M C, et al. Non-negative latent factor model based on β-divergence for recommender systems[J]. IEEE Transactions on Systems,Man and Cybernetics:Systems, 2021, 51(8):4612-4623.
|
[9] |
Xu Z Y, Hu Z Y, Zheng X Y, et al. A matrix factorization recommendation model for tourism points of interest based on interest shift and differential privacy[J]. Journal of Intelligent and Fuzzy Systems, 2023, 44(1):713-727.
|
[10] |
Luo X, Zhou M C, Li S, et al. Algorithms of unconstrained non-negative latent factor analysis for recommender systems[J]. IEEE Transactions on Big Data, 2021, 7(1): 227-240.
|
[11] |
Bin S, Sun G X. Matrix factorization recommendation algorithm based on multiple social relationships[J]. Mathematical Problems in Engineering, 2021, 47(2):1-8.
|
[12] |
Cui Z, Xu X, Fei X. Personalized recommendation system based on collaborative filtering for IoT scenarios[J]. IEEE Transactions on Services Computing, 2020, 13(4):685-695.
|
[13] |
Ma H, Yang H, Lyu M R. Sorec:Social recommendation using probabilistic matrix factorization[C]. New York: Proceedings of the Seventeenth ACM Conference on Information and Knowledge Management,2008:931-940.
|
[14] |
Sejwal V, Abulaish M. A trust-based collaborative filtering approach to design recommender systems[J]. International Journal of Advanced Computer Science and Applications, 2020, 11(10):563-573.
|
[15] |
许凤翔. 一种改进相似度的协同过滤算法实现[J]. 电子科技, 2020, 33(2):54-59.
|
|
Xu Fengxiang. Implementation of a collaborative filtering algorithm based on improved similarity[J]. Electronic Science and Technology, 2020, 33(2):54-59.
|
[16] |
盛立群, 宋燕. 一种改进的基于隐式信任信息的社交推荐模型[J]. 小型微型计算机系统, 2022, 43(2):306-311.
|
|
Sheng Liqun, Song Yan. Improved social recommendation model based on implicit trust information[J]. Journal of Chinese Computer Systems, 2022, 43(2):306-311.
|
[17] |
Guo G B, Zhang J, Thalmann A. ETAF:An extended trust antecedents framework for trust prediction[C]. Beijing: Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 2014:440-547.
|
[18] |
Maxwell F, Harper F M. The movieLens datasets:History and context[J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5(4):1-19.
|
[19] |
Guo G B, Zhang J, Yorke-Smith N. A novel Bayesian similarity measure for recommender systems[C]. Beijing: Proceedings of Twenty-third International Joint Conference on Artificial Intelligence,2013:2619-2625.
|
[20] |
Harper F, Joseph A K. The movieLens datasets: History and context[J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5(4):1068-1074.
|
[21] |
Ma H, King I, Lyu M R. Learning to recommend with social trust ensemble[C]. New York: International ACM Sigir Conference on Research and Development in Information Retrieval, Association for Computing Machinery,2009:203-210.
|
[22] |
谢胜利, 何昭水, 傅予力. 基于稀疏元分析的欠定混叠自适应盲分离方法[J]. 中国科学:信息科学, 2007, 37(8): 1086-1098.
|
|
Xie Shengli, He Zhaoshui, Fu Yuli. Under determined aliasing adaptive blind separation method based on sparse element analysis[J]. Scientia Sinica(Technologica), 2007, 37(8):1086-1098.
|
[23] |
刘晗, 王万雄. 基于SARIMA-GS-SVR组合模型的短期电力需求预测[J]. 电子科技, 2022, 35(8):58-65.
|
|
Liu Han, Wang Wanxiong. Short-term power demand forecasting based on SARIMA-GS-SVR combined model[J]. Electronic Science and Technology, 2022, 35(8): 58-65.
|