电子科技 ›› 2025, Vol. 38 ›› Issue (2): 62-69.doi: 10.16180/j.cnki.issn1007-7820.2025.02.008

• • 上一篇    下一篇

基于脑电信号和周围生理信号的多模态融合情感识别

马壮, 甘开宇, 尹钟()   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2023-08-08 修回日期:2023-09-01 出版日期:2025-02-15 发布日期:2025-01-16
  • 通讯作者: 尹钟(1988-),男, E-mail:yinzhong@usst.edu.cn,博士,副教授。研究方向:认知工作负荷识别、生物医学信号处理、情感计算。
  • 作者简介:马壮(1999-),男,硕士研究生。研究方向:机器学习、深度学习、情感计算。
    甘开宇(1999-),男,硕士研究生。研究方向:机器学习、深度学习、情感计算。
  • 基金资助:
    国家自然科学基金(61703277);上海青年科技英才扬帆计划(17YF1427000)

Emotion Recognition Based on Multimodal Fusion of the EEG and Peripheral Physiological Signals

MA Zhuang, GAN Kaiyu, YIN Zhong()   

  1. School of Optical-Electrical Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2023-08-08 Revised:2023-09-01 Online:2025-02-15 Published:2025-01-16
  • Supported by:
    National Natural Science Foundation of China(61703277);Shanghai Sailing Program(17YF1427000)

摘要:

基于脑电信号(Electroencephalogram,EEG)和周围生理信号解码人类内部情绪状态是情感计算领域的关键,但使用脑电信号或周围生理信号模态的机器学习模型性能可能受到限制。文中基于单模态方法提出了一种多模态融合策略,对每个脑电信号片段提取了微分熵特征、统计特征和复杂度特征,并对这些特征与周围生理信号特征进行了适当整合。文中方法融合了DEAP(Database for Emotion Analysis using Physiological Signals)数据集中记录的多个模态特征。在效价方面,单一脑电特征的实验精度为49.21%,两类特征融合分别取得了56.39%、55.24%和56.98%的分类精度,3类模态融合的实验精度为56.98%。在唤醒方面,单一脑电特征的实验精度为49.34%,两类特征融合分别取得了54.53%、54.53%和59.39%的分类精度,3类特征融合的实验精度为55.48%。实验结果表明,脑电信号特征和外周围生理信号特征融合后的多模态特征分类精度最高,相比于单一的脑电信号特征分类精度分别提升了7.77%和10.05%。

关键词: 情感计算, 特征融合, 情感识别, 信息融合, 多模态情感融合, 脑电信号, 情感模态, 机器学习

Abstract:

Decoding human internal emotional states based on EEG(Electroencephalogram) and surrounding physiological signals is key in the field of emotional computing, but the performance of machine learning models using EEG or surrounding physiological signal modes may be limited. In this study, a multi-mode fusion strategy is proposed based on the single mode method. The differential entropy, statistical and complexity features are extracted from each EEG fragment, and these features are properly integrated with the surrounding physiological signals. Multiple modal features recorded in the DEAP(Database for Emotion Analysis using Physiological Signals) data set are incorporated in the proposed method. In terms of titer, the experimental accuracy of single EEG feature is 49.21%, the classification accuracy of two types of feature fusion is 56.39%, 55.24% and 56.98%, and the experimental accuracy of three types of mode fusion is 56.98%. In terms of arousal, the experimental accuracy of single EEG feature is 49.34%, the classification accuracy of two types of feature fusion is 54.53%, 54.53% and 59.39%, and the experimental accuracy of three types of feature fusion is 55.48%. The experimental results show that the classification accuracy of multi-modal features after the fusion of EEG features and peripheral physiological features is the highest, and the classification accuracy is improved by 7.77% and 10.05%, respectively, compared with the single EEG features.

Key words: affective computing, feature fusion, emotion recognition, information fusion, multimodal emotion fusion, EEG, emotion modality, machine learning

中图分类号: 

  • TP391