电子科技 ›› 2025, Vol. 38 ›› Issue (2): 70-77.doi: 10.16180/j.cnki.issn1007-7820.2025.02.009

• • 上一篇    下一篇

基于优化BPNN的FPGA内嵌高速接口总抖动预测方法

叶翔宇1(), 林晓会2, 丁江乔1, 解维坤2   

  1. 1.南京信息工程大学 电子与信息工程学院,江苏 南京 211800
    2.中国电子科技集团公司 第58研究所,江苏 无锡 214072
  • 收稿日期:2023-08-10 修回日期:2023-09-02 出版日期:2025-02-15 发布日期:2025-01-16
  • 通讯作者: 叶翔宇(1997-),男, E-mail:1848807072@qq.com,硕士研究生。研究方向:大规模数字集成电路测试。
  • 作者简介:林晓会(1995-),男,工程师。研究方向:大规模数字集成电路测试。
    丁江乔(1987-),男,博士,副教授。研究方向:电磁场与微波技术。
  • 基金资助:
    装备预研项目(31517040401)

Total Jitter Prediction Method of FPGA Embedded High-Speed Interface Based on Optimized BPNN

YE Xiangyu1(), LIN Xiaohui2, DING Jiangqiao1, XIE Weikun2   

  1. 1. School of Electronic and Information Engineering,Nanjing University of Information Science and Technology, Nanjing 211800,China
    2. The 58th Research Institute,China Electronics Technology Group Corporation, Wuxi 214072,China
  • Received:2023-08-10 Revised:2023-09-02 Online:2025-02-15 Published:2025-01-16
  • Supported by:
    Project of Equipment Pre-Research(31517040401)

摘要:

针对ATE(Automated Test Equipment)无法直接测试出FPGA(Field-Programmable Gate Array)内嵌高速接口总抖动的问题,文中提出了一种基于优化BPNN(Back Propagation Neural Network)对高速接口进行总抖动预测的方法。利用GA(Genetic Algorithm)较强的全局搜索能力优化BPNN的初始权重和寻参过程,组成了GA_BP神经网络,提高了预测总抖动的准确率。利用MATLAB软件建立GA_BP总抖动预测模型,对筛选后的抖动数据进行预测优化。实验结果表明,与未优化的BP神经网络和传统Elman神经网络预测模型相比,GA_BP预测模型的均方误差分别下降了75.5%、88.0%,迭代次数分别减少了68.0%、59.8%,说明GA_BP模型预测准确率和迭代效率更高,可被应用于ATE中进行总抖动量产测试。

关键词: 高速接口, 总抖动预测, 优化BP神经网络, 遗传算法, Grubbs准则, FPGA, 均方误差, 量产测试

Abstract:

In view of the problem that ATE(Automated Test Equipment) can not measure the total jitter of FPGA(Field-Programmable Gate Array) embedded high-speed interface directly, this study presents a method to predict the total jitter of high-speed interface based on optimized BPNN(Back Propagation Neural Network). The GA-BP neural network is formed to optimize the initial weight and parameter seeking process of BPNN using the strong global search ability of GA(Genetic Algorithm), and improve the accuracy of predicting the total jitter. The GA_BP total jitter prediction model was constructed using MATLAB software to predict and optimize the screened jitter data. The experimental results show that compared with the non-optimized BP neural network and the traditional Elman neural network prediction model, the mean square error of the GA_BP prediction model is declined by 75.5% and 88.0%, and the number of iterations is reduced by 68.0% and 59.8%, respectively. It indicates that the proposed GA_BP model has higher prediction accuracy and iteration efficiency, and can be applied to total jitter production test in ATE.

Key words: high-speed interface, total jitter prediction, optimized BP neural network, genetic algorithm, Grubbs criterion, FPGA, mean square error, production test

中图分类号: 

  • TP27