电子科技 ›› 2025, Vol. 38 ›› Issue (2): 93-102.doi: 10.16180/j.cnki.issn1007-7820.2025.02.012

• • 上一篇    

基于WLS-AUKF混合算法的主动配电网联合状态估计

满延露, 刘敏()   

  1. 贵州大学 电气工程学院,贵州 贵阳 550000
  • 收稿日期:2023-07-16 修回日期:2023-08-11 出版日期:2025-02-15 发布日期:2025-01-16
  • 通讯作者: 刘敏(1972-),女,E-mail:manyanlu@foxmail.com,博士,教授。研究方向:电力系统运行优化。
  • 作者简介:满延露(1997-),女,硕士研究生。研究方向:配电网状态估计。
  • 基金资助:
    国家自然科学基金(51967004)

Joint State Estimation of Active Distribution Network Based on WLS-AUKF Hybrid Algorithm

MAN Yanlu, LIU Min()   

  1. The Electrical Engineering College,Guizhou University,Guiyang 550000,China
  • Received:2023-07-16 Revised:2023-08-11 Online:2025-02-15 Published:2025-01-16
  • Supported by:
    National Natural Science Foundation of China(51967004)

摘要:

响应负载和分布式能源的随机性和波动性、相量测量单元(Phasor Measurement Unit, PMU)配置的经济性需求对配电网状态估计提出了更高要求。文中提出了考虑PMU配置优化的加权最小二乘法(Weighted Least Squares,WLS)-自适应无迹卡尔曼滤波(Adaptive Untraced Kalman Filtering,AUKF)的主动配电网联合状态估计。通过改进粒子群优化算法(Metropolis-Hastings Crossover Particle Swarm Optimization,MHCPSO)实现PMU优化配置,再结合WLS和AUKF提出联合状态估计。联合方式是WLS为AUKF馈送稳健的量测数据,AUKF为WLS提供先验预测值并补充量测冗余。仿真结果表明,在相同PMU数量下,MHCPSO算法比遗传粒子群算法(Genetic Algorithm Particle Swarm Optimization,GAPSO)估计精度更高。在相同状态估计误差情况下,MHCPSO算法配置的PMU数量比GAPSO算法可最多减少4个。在光伏(Photovoltaic,PV)/电动汽车(Electric Vehicles,EV)并网无序充放电和某一时刻负荷突变情况下,WLS-AUKF算法均体现出了比UKF(Untraced Kalman Filtering)算法更好的估计性能。在PMU配置优化、PV/VE并网以及负荷突变3个场景中体现出了WLS-AUKF状态估计的高精度、经济性、抗差性和稳健性。

关键词: 主动配电网, 联合状态估计, 加权最小二乘法, 自适应无迹卡尔曼滤波, PMU优化配置, 改进粒子群算法, 两点交叉法, Metropolis-Hastings算法, 遗传粒子群算法

Abstract:

The randomness and volatility of response load and distributed energy, and the economic requirements of PMU(Phasor Measurement Unit)configuration put forward higher requirements for distribution network state estimation.In this paper, a WLS(Weighted Least Squares)-AUKF(Adaptive Untraced Kalman Filtering) considering PMU configuration optimization is proposed for active distribution network joint state estimation.The PMU is optimized by MHCPSO(Metropolis-Hastings Crossover Particle Swarm Optimization), and combined with WLS and AUKF, the joint state estimation is proposed.In the joint approach, WLS feeds robust measurement data to AUKF, and AUKF provides prior predictive values to WLS and supplements measurement redundancy.The simulation results show that the MHCPSO algorithm has higher estimation accuracy than the GAPSO(Genetic Algorithm Particle Swarm Optimization) under the same PMU quantity.In the case of the same state estimation error, the number of PMUs configured by MHCPSO algorithm can be reduced by up to four when compared with GAPSO algorithm.The WLS-AUKF algorithm has better estimation performance than UKF(Untraced Kalman Filtering) algorithm in the case of random charging and discharging of PV(Photovoltaic)/EV(Electric Vehicles) connected to the grid and sudden load change at a certain time.The high precision, economy, robustness and robustness of WLS-AUKF state estimation are demonstrated in three scenarios: PMU configuration optimization, PV/EV grid-connection and load mutation.

Key words: active distribution network, joint status estimation, weighted least squares, adaptive unscented Kalman filtering, PMU optimized configuration, improved particle swarm arithmetic, two-point cross method, Metropolis-Hastings algorithm, genetic particle swarm algorithm

中图分类号: 

  • TP23