[1] |
李哲辉, 袁天辰, 杨俭, 等. 一种新型悬浮磁体结构的双自由度轨道车辆轴箱振动能量采集器[J]. 电子科技, 2022, 35(1):12-20.
|
|
Li Zhehui, Yuan Tianchen, Yang Jian, et al. A new type of suspension magnet structure for double-degree-of-freedom vibration energy harvester of axle box for railway vehicle[J]. Electronic Science and Technology, 2022, 35(1):12-20.
|
[2] |
郑木鹏, 侯育冬, 朱满康, 等. 能量收集用压电陶瓷材料研究进展[J]. 硅酸盐学报, 2016, 44(3):359-366.
|
|
Zheng Mupeng, Hou Yudong, Zhu Mankang, et al. Research progress on piezoelectric ceramic for energy harvesting[J]. Journal of Chinese Ceramic Society, 2016, 44(3):359-366.
|
[3] |
Sodano A H. Comparison of piezoelectric energy harvesting devices for recharging batteries[J]. Journal of Intelligent Material Systems and Structures, 2005, 16(10):799-807.
|
[4] |
Caliò R, Rongala B U, Camboni D, et al. Piezoelectric energy harvesting solutions[J]. Sensors, 2014, 14(3): 4755-4790.
|
[5] |
Challa V R, Prasad M G, Fisher F T. A coupled piezoelectric-electromagnetic energy harvesting technique for achieving increased power output through damping matching[J]. Smart Mater Struct, 2009, 18(9):29-40.
|
[6] |
Zhang Q, Liang Q J, Zhang Z, et al. Electromagnetic shielding hybrid nanogenerator for health nonitoring and protection[J]. Advanced Functional Materials, 2018, 28(1):1703801-1703808.
|
[7] |
Zhong L W, Wang A C. On the origin of contact-electrification[J]. Materials Today, 2019, 30(2): 34-51.
|
[8] |
Suzuki Y, Miki D, Edamoto M, et al. A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications[J]. Journal of Micromechanics and Microengineering, 2010, 20(10): 104002-104010.
|
[9] |
Saadon S, Sidek O. A review of vibration-based MEMS piezoelectric energy harvesters[J]. Energy Conversion and Management, 2010, 52(1):500-504.
|
[10] |
Bent A A. Active fiber composites for structural actuation[D]. Cambridge: Massachusetts Institute of Technology,1997:19-34.
|
[11] |
谢伟平, 陈谣, 王先锋. 基于MFC的地铁轨道振动能量收集研究[J]. 振动与冲击, 2022, 41(9):210-218,236.
|
|
Xie Weiping, Chen Yao, Wang Xianfeng. Metro track vibration energy collection based on PFC[J]. Journal of Vibration and Shock, 2022, 41(9):210-218,236.
|
[12] |
Wang L X, Lin W, Wen Q, et al. Research and application of vibration energy harvester using macro-fiber composite[J]. Procedia Computer Science, 2019, 155(5):752-757.
|
[13] |
Ju S, Chae S H, Choi Y, et al. Macro fiber composite-based low frequency vibration energy harvester[J]. Sensors and Actuators A:Physical, 2015, 22(6):126-136.
|
[14] |
王海清, 刘龙建, 胡利民, 等. 基于压电纤维复合材料的洋流能发电装置发电性能分析[J]. 电机与控制应用, 2020, 47(9):97-105.
|
|
Wang Haiqing, Liu Longjian, Hu Limin, et al. Performance analysis of ocean-current generator based on macro-fiber composite[J]. Electrical Machines and Control Applications, 2020, 47(9):97-105.
|
[15] |
王红艳, 谢涛, 王志彬. 压电纤维复合材料悬臂梁发电性能分析[J]. 传感器与微系统, 2010, 29(3):46-49.
|
|
Wang Hongyan, Xie Tao, Wang Zhibin. Electrical performance analysis of piezoelectric fiber composite cantilever[J]. Transducer and Microsystem Technologies, 2010, 29(3):46-49.
|
[16] |
Yang Y W, Tang L H, Li H Y. Vibration energy harvesting using macro-fiber composites[J]. Smart Materials and Structures, 2009, 18(11):269-273.
|
[17] |
杨雄, 沈杰, 王锋, 等. 压电纤维复合材料能量采集仿真[J]. 硅酸盐学报, 2019, 47(9):1283-1287.
|
|
Yang Xiong, Shen Jie, Wang Feng, et al. Simulation of energy harvesting of piezoelectric fiber composites[J]. Journal of the Chinese Society, 2019, 47(9):1283-1287.
|
[18] |
杨雄, 沈杰, 张瑶瑶, 等. 梯度结构压电纤维复合材料动态能量采集仿真[J]. 硅酸盐学报, 2021, 49(4):659-665.
|
|
Yang Xiong, Shen Jie, Zhang Yaoyao, et al. Simulation of dynamic energy harvesting of gradient structure piezoelectric fiber composites[J]. Journal of the Chinese Society, 2021, 49(4): 659-665.
|
[19] |
贾宏宇. MFC压电纤维复合材料的制备与振动能量收集研究[D]. 济南: 济南大学,2021:1-16.
|
|
Jia Hongyu. Preparation and research on vibration energy harvesting of MFC[D]. Jinan: Jinan University,2021:1-16.
|