[1] |
张天奇, 张顺康. 基于主成分分析的实时全网络异常检测方法[J]. 电子科技, 2019, 32(12):17-21.
|
|
Zhang Tianqi, Zhang Shunkang. A real-time full network performance anomaly detection algorithm based on principal component[J]. Electronic Science and Technology, 2019, 32(12):17-21.
|
[2] |
He H, Sun X, He H, et al. A novel multimodal-sequential approach based on multi-view features for network intrusion detection[J]. IEEE Access, 2019, 20(7): 183207-183221.
|
[3] |
Wu P, Guo H. LuNET:A deep neural network for network intrusion detection[C]. Xiamen: IEEE Symposium Series on Computational Intelligence,2019:617-624.
|
[4] |
Rusek K, Suarez Varela J, Almasan P, et al. RouteNet: Leveraging graph neural networks for network modeling and optimization in SDN[J]. IEEE Journal on Selected Areas in Communications, 2020, 39(9):1-7.
|
[5] |
Zhou J, Xu Z, Rush A M, et al. Automating botnet detection with graph neural networks[EB/OL].(2020-3-13) [2023-08-12].https://doi.org/10.48550/arXiv.2003.06344.
|
[6] |
Benaddi H, Jouhari M, Ibrahimi K, et al. Anomaly detection in industrial IoT using distributional reinforcement learning and generative adversarial networks[J]. Sensors, 2022, 22(21):8085-8086.
|
[7] |
Zhu H, Lu J. Graph-based intrusion detection system using general behavior learning[C]. Rio de Janeir: IEEE Global Communications Conference,2022:2621-2626.
|
[8] |
Wang Z, Li Z, Wang J, et al. Network intrusion detection model based on improved BYOL self-supervised learning[J]. Security and Communication Networks, 2021, 47(2):1-23.
|
[9] |
Chen T, Kornblith S, Norouzi M, et al. A simple framework for contrastive learning of visual representations[C]. Online: International Conference on Machine Learning,2020:1597-1607.
|
[10] |
Liu Y, Jin M, Pan S, et al. Graph self-supervised learning:A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(6):5879-5900.
|
[11] |
Sun F Y, Hoffmann J, Verma V, et al. Infograph: Unsupervised and semi-supervised graph-level representation learning via mutual information maximization[EB/OL].(2019-6-31)[2023-08-12].https://doi.org/10.48550/arXiv.1908.01000.
|
[12] |
You Y, Chen T, Sui Y, et al. Graph contrastive learning with augmentations[J]. Advances in Neural Information Processing Systems, 2020, 33(1):5812-5823.
|
[13] |
陈娜, 黄金诚, 李平. 结合对比学习的图神经网络防御方法[J]. 计算机科学与探索, 2023, 17(8):1949-1960.
|
|
Chen Na, Huang Jincheng, Li Ping. Graph neural network defense combined with contrast learning[J]. Journal of Frontiers Computer Science and Technology, 2023, 17(8):1949-1960.
|
[14] |
Hamilton W, Ying Z, Leskovec J. Inductive representation learning on large graphs[J]. Advances in Neural Information Processing Systems, 2017, 30(2):47-51.
|
[15] |
Lo W W, Layeghy S, Sarhan M, et al. E-graphSAGE:A graph neural network based intrusion detection system for IoT[C]. Budapest: NOMS IEEE/IFIP Network Operations and Management Symposium,2022:1-9.
|
[16] |
Hadsell R, Chopra S, Yang L C. Dimensionality reduction by learning an invariant mapping[C]. New York: IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2006:1735-1742.
|
[17] |
Oord A, Li Y, Vinyals O. Representation learning with contrastive predictive coding[EB/OL].(2018-6-10) [2023-08-12].https://doi.org/10.48550/arXiv.1807.03748.
|
[18] |
He Z, Xu X, Deng S. Discovering cluster-based local outliers[J]. Pattern Recognition Letters, 2003, 24(9-10): 1641-1650.
|
[19] |
Xu K, Li C, Tian Y, et al. Representation learning on graphs with jumping knowledge networks[C]. Stockholm: International Cconference on Machine Learning,2018: 5453-5462.
|
[20] |
Sarhan M, Layeghy S, Portmann M. Towards a standard feature set for network intrusion detection system datasets[J]. Mobile Networks and Applications, 2022, 47(7): 1-14.
|
[21] |
邹承明, 陈德. 高维大数据分析的无监督异常检测方法[J]. 计算机科学, 2021, 48(2):121-127.
|
|
Zou Chengming, Chen De. Unsupervised anomaly detection method for high-dimensional big data analysis[J]. Computer Science, 2021, 48(2):121-127.
|
[22] |
Sinha J, Manollas M. Efficient deep CNN-BiLSTM model for network intrusion detection[C]. Xiamen: The Third International Conference on Artificial Intelligence and Pattern Recognition,2020:223-231.
|
[23] |
Chang L, Branco P. Graph-based solutions with residuals for intrusion detection: The modified E-graphSAGE and E-ResGAT algorithms[EB/OL].(2021-11-26)[2023-08-12].https://doi.org/10.48550/arXiv.2111.13597.
|
[24] |
Wang W, Jian S, Tan Y, et al. Robust unsupervised network intrusion detection with self-supervised masked context reconstruction[J]. Computersand Security, 2023, 72(8): 103131-103132.
|
[25] |
Zakroum M, François J, Ghogho M, et al. Self-supervised latent representations of network flows and application to darknet traffic classification[J]. IEEE Access, 2023, 26(4):74-83.
|