[1] |
苏龙飞, 李振轩, 高飞, 等. 遥感影像水体提取研究综述[J]. 国土资源遥感, 2021, 33(1):9-19.
|
|
Su Longfei, Li Zhenxuan, Gao Fei, et al. A review of remote sensing image water extraction[J]. Remote Sensing for Natural Resources, 2021, 33(1):9-19.
|
[2] |
周鹏, 谢元礼, 蒋广鑫, 等. 遥感影像水体信息提取研究进展[J]. 遥感信息, 2020, 35(5):9-18.
|
|
Zhou Peng, Xie Yuanli, Jiang Guangxin, et al. Advances on water body information extraction from remote sensing imagery[J]. Remote Sensing Information, 2020, 35(5):9-18.
|
[3] |
刘璐, 张洪艳, 张良培. 基于光谱加权低秩矩阵分解的高光谱影像去噪方法[J]. 电子科技, 2020, 33(05):21-27.
|
|
Liu Lu, Zhang Hongyan, Zhang Liangpei. Hyperspectral image denoising via spectral weighted low-rank matrix approximate[J]. Electronic Science and Technology, 2020, 33(5):21-27.
|
[4] |
温泉, 李璐, 熊立, 等. 基于深度学习的遥感图像水体提取综述[J]. 自然资源遥感, 2024, 36(3):57-71.
|
|
Wen Quan, Li Lu, Xiong Li, et al. A review of water extraction from remote sensing images based on deep learning[J]. Remote Sensing for Natural Resources, 2024, 36(3):57-71.
|
[5] |
Cao H, Zhang H, Wang C, et al. Operational flood detection using sentinel-1 SAR data over large areas[J]. Water, 2019, 11(4):786-806.
|
[6] |
Yao F F, Wang J D, Wang C, et al. Constructing long-term high-frequency time series of global lake and reservoir areas using Landsat imagery[J]. Remote Sensing of Environment, 2019, 232(10):1113-1133.
|
[7] |
Ahmad K S, Hossain F, Eldardiry H, et al. A fusion approach for water area classification using visible, near infrared and synthetic aperture radar for south Asian conditions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4):2471-2480.
|
[8] |
吴梦娟. 基于深度学习的高分卫星数据水体提取研究[D]. 南京: 南京信息工程大学,2020:1-74.
|
|
Wu Mengjuan. Research onwater extraction of GF-1 satellite data based on deep learning[D]. Nanjing: Nanjing University of Information Science and Technology,2020:1-74.
|
[9] |
吴瑞娟, 何秀凤. 高分雷达与光学影像融合的滨海湿地变化检测[J]. 测绘科学, 2020, 45(11):93-100.
|
|
Wu Ruijuan, He Xiufeng. Coastal wetland change detection using fusion of high of resolution radar and optical images[J]. Science of Surveying and Mapping, 2020, 45(11): 93-100.
|
[10] |
洪亮, 黄雅君, 杨昆, 等. 复杂环境下高分二号遥感影像的城市地表水体提取[J]. 遥感学报, 2019, 23(5):871-882.
|
|
Hong Liang, Huang Yajun, Yang Kun, et al. Study on urban surface water extraction from heterogeneous environments using GF-2 remotely sensed images[J]. National Remote Sensing Bulletin, 2019, 23(5):871-882.
|
[11] |
汪权方, 张梦茹, 张雨, 等. 基于视觉注意机制的大范围水体信息遥感智能提取[J]. 计算机应用, 2020, 40(4):1038-1044.
|
|
Wang Quanfang, Zhang Mengru, Zhang Yu, et al. Intelligent extraction of remote sensing information on large-scale water based on visual attention mechanism[J]. Journal of Computer Applications, 2020, 40(4):1038-1044.
|
[12] |
周婷, 汪炎, 邹俊, 等. 基于PCA和SVM的遥感影像水体提取方法及验证[J]. 水资源保护, 2023, 39(2):180-189.
|
|
Zhou Ting, Wang Yan, Zou Jun, et al. PCA and SVM-based algorithm of water area extraction from remote sensing images and its verification[J]. Water Resources Protection, 2023, 39(2):180-189.
|
[13] |
陈前, 郑利娟, 李小娟, 等. 基于深度学习的高分遥感影像水体提取模型研究[J]. 地理与地理信息科学, 2019, 35(4):43-49.
|
|
Chen Qian, Zheng Lijuan, Li Xiaojuan, et al. Water body extraction from high-resolution satellite remote sensing images based on deep learning[J]. Geography and Geo-Information Science, 2019, 35(4):43-49.
|
[14] |
梁泽毓, 吴艳兰, 杨辉, 等. 基于密集连接全卷积神经网络的遥感影像水体全自动提取方法[J]. 遥感信息, 2020, 35(4):68-77.
|
|
Liang Zeyu, Wu Yanlan, Yang Hui, et al. Fully-automatic water extraction method for remote sensing imagery based on densely connected fully convolutional neural network[J]. Remote Sensing Information, 2020, 35(4):68-77.
|
[15] |
郑泰皓, 王庆涛, 李家国, 等. 基于深度学习的高分六号影像水体自动提取[J]. 科学技术与工程, 2021, 21(4):1459-1470.
|
|
Zheng Taihao, Wang Qingtao, Li Jiaguo, et al. Automatic water extraction from GF-6 image based on deep larning[J]. Science Technology and Engineering, 2021, 21(4):1459-1470.
|
[16] |
李鑫伟, 李彦胜, 张永军. 弱监督深度语义分割网络的多源遥感影像水体检测[J]. 中国图象图形学报, 2021, 26(12):3015-3026.
|
|
Li Xinwei, Li Yansheng, Zhang Yongjun. Weakly supervised deep semantic segmentation network for water body extraction based on multi-source remote sensing imagery[J]. Journal of Image and Graphics, 2021, 26(12):3015-3026.
|
[17] |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation[C]. Munich:In Medical Image Computing and Computer Assisted Intervention:The Eighteenth International Conference,2015:234-241.
|
[18] |
Zhou Z W, Rahman Siddiquee M M, Tajbakhsh N, et al. UN-et++:A nested UNET architecture for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2018, 39(9):1856-1867.
|
[19] |
Badrinarayanan V, Kendall A, Cipolla R. SegNet:A deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12):2481-2495.
|
[20] |
Yu F, Koltun V, Funkhouser T. Dilated residual networks[C]. Honolulu: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,2017:472-480.
|