电子科技 ›› 2025, Vol. 38 ›› Issue (3): 88-94.doi: 10.16180/j.cnki.issn1007-7820.2025.03.012

• • 上一篇    

基于集成学习的虹膜分割算法

孙佳倩, 朱金荣(), 张小宝, 张云恺, 龚卫娟   

  1. 扬州大学 物理科学与技术学院,江苏 扬州 225100
  • 收稿日期:2023-09-20 修回日期:2023-10-21 出版日期:2025-03-15 发布日期:2025-03-11
  • 通讯作者: 朱金荣(1968-),男,E-mail:jrzhu@yzu.edu.cn,教授。研究方向:物联网与人工智能。
  • 作者简介:孙佳倩(1999-),女,硕士研究生。研究方向:物联网与人工智能。
    龚卫娟(1974-),女,博士,教授。研究方向:代谢性疾病相关的免疫细胞与分子机制。
  • 基金资助:
    国家自然科学基金(61802336)

Research on Iris Segmentation Algorithm Based on Ensemble Learning

SUN Jiaqian, ZHU Jinrong(), ZHANG Xiaobao, ZHANG Yunkai, GONG Weijuan   

  1. School of Physical Science and Technology,Yangzhou University,Yangzhou 225100,China
  • Received:2023-09-20 Revised:2023-10-21 Online:2025-03-15 Published:2025-03-11
  • Supported by:
    National Natural Science Foundation of China(61802336)

摘要:

针对虹膜图像在分割过程中细节分割不准确、边界分割不圆滑以及易受噪声影响等问题,文中提出了一种基于集成学习的虹膜分割算法。相较于传统集成学习算法,文中算法基于皮尔森系数法选择合适的模型作为基学习器,从而提高了集成学习的性能。选用U2-Net、DeepLabv3+以及PSPNet作为同质个体学习器在CASIA-Iris-Interval数据集上进行训练,并预测得到对应的虹膜分割预测结果。对预测结果进行CLAHE和Gamma校正等图像增强操作得到新的预测结果图,选取加权平均法作为集成算法将基学习器的预测结果进行集成学习,从而得到最终的虹膜分割预测结果。测试结果表明,在3个不同的评估指标下,相较于基学习器,所提算法的准确率提升了1%,平均交并比提升了3.8%,宏平均分数提升了2.4%,视觉效果和客观评价指标均有所提升。

关键词: 虹膜分割, 集成学习, 学习器, U2-Net, DeepLabv3+, PSPNet, 皮尔森系数法, 图像处理

Abstract:

In view of the problems such as inaccurate detail segmentation, unsmooth boundary segmentation and easy to be affected by noise, an iris segmentation algorithm based on ensemble learning is proposed in this study. Compared with the traditional ensemble learning algorithm, the appropriate model is selected as the base learner based on Pearson coefficient method, so as to improve the performance of ensemble learning. U2-Net, DeepLabv3+ and PSPNet are selected as homogeneous individual learners to train on the CASIA-Iris-Interval dataset, and the corresponding iris segmentation prediction results are obtained. CLAHE and Gamma correction and other image enhancement operations are performed to obtain a new prediction result graph. Weighted average method is selected as an integrated algorithm to integrate the prediction results of the basis learner, so as to obtain the final prediction results of iris segmentation. The test results show that the accuracy of the proposed algorithm is improved by 1%, the average crossover ratio is improved by 3.8%, the average macro score is improved by 2.4%, and the visual effect and objective evaluation index have better segmentation effect when compared with the base learner under three different evaluation indexes.

Key words: iris egmentation, integrated learning, learner, U2-Net, DeepLabv3+, PSPNet, Pearson coefficient method, image processing

中图分类号: 

  • TP391.4