| [1] |
黎静华, 骆怡辰, 杨舒惠, 等. 可再生能源电力不确定性预测方法综述[J]. 高电压技术, 2021, 47(4):1144-1155.
|
|
Li Jinghua, Luo Yichen, Yang Shuhui, et al. Review of uncertainty forecasting methods for renewable energy power[J]. High Voltage Technology, 2021, 47(4):1144-1155.
|
| [2] |
Rafi S H, Deeba S R, Hossain E, et al. A short-term load forecasting method using integrated CNN and LSTM network[J]. IEEE Access, 2021, 9(1):32436-32448.
|
| [3] |
简献忠, 顾洪志, 王如志. 一种基于双通道CNN和LSTM的短期光伏功率预测方法[J]. 电力科学与工程, 2019, 35(5):7-11.
doi: 1672-0792(2019)05-0007-05
|
|
Jian Xianzhong, Gu Hongzhi, Wang Ruzhi. A short-term photovoltaic power prediction method based on dual-channel CNN and LSTM[J]. Electric Power Science and Engineering, 2019, 35(5):7-11.
doi: 1672-0792(2019)05-0007-05
|
| [4] |
黄圆, 魏云冰, 童东兵, 等. 基于VMD和改进TCN的短期光伏发电功率预测[J]. 电子科技, 2023, 36(3):42-49.
|
|
Huang Yuan, Wei Yunbing, Tong Dongbing, et al. Short-term photovoltaic power prediction based on VMD and improved TCN[J]. Electronic Science and Technology, 2023, 36(3):42-49.
|
| [5] |
叶兴, 薛家祥. 改进型LSTM网络光伏发电功率预测研究[J]. 中国测试, 2019, 45(11):14-20.
|
|
Ye Xing, Xue Jiaxiang. Research on photovoltaic power generation prediction based on improved LSTM network[J]. China Measurement and Test, 2019, 45(11):14-20.
|
| [6] |
董雪, 赵宏伟, 赵生校, 等. 基于SOM聚类和二次分解的BiGRU超短期光伏功率预测[J]. 太阳能学报, 2022, 43(11):85-93.
doi: 10.19912/j.0254-0096.tynxb.2021-0518
|
|
Dong Xue, Zhao Hongwei, Zhao Shengxiao, et al. Ultra-short-term forecasting method of photovoltaic power based on SOM clustering,secondary decomposition and BiGRU[J]. Acta Energiae Solaris Sinica, 2022, 43(11):85-93.
doi: 10.19912/j.0254-0096.tynxb.2021-0518
|
| [7] |
Fang X, Han S H, Li Juan, et al. A FCM-XGBoost-GRU model for short-term photovoltaic power forecasting based on weather classification[C]. Chengdu: The Fifth Asia Energy and Electrical Engineering Symposium, 2023:1444-1449.
|
| [8] |
冯先丁, 魏镜弢, 吴张永, 等. 基于PCA-PSO-SVM的球磨机负荷预测研究[J]. 电子科技, 2022, 35(1):29-34.
|
|
Feng Xianding, Wei Jingtao, Wu Zhangyong, et al. Research on load forecast of ball mill based on PCA-PSO-SVM[J]. Electronic Science and Technology, 2022, 35(1): 29-34.
|
| [9] |
Lin P J, Peng Z N, Lai Y F, et al. Short-term power prediction for photovoltaic power plants using a hybrid improved K-means-GRA-Elman model based on multivariate meteorological factors and historical power datasets[J]. Energy Conversion and Management, 2018, 177(1):704-717.
|
| [10] |
吕伟杰, 方一帆, 程泽. 基于模糊C均值聚类和样本加权卷积神经网络的日前光伏出力预测研究[J]. 电网技术, 2022, 46(1):231-238.
|
|
Lü Weijie, Fang Yifan, Cheng Ze. Research of day-ahead photovoltaic output based on FCM-WA-CNN[J]. Power System Technology, 2022, 46(1):231-238.
|
| [11] |
王桢, 王海祥. 不同天气下光伏电池全日输出电压与功率研究[J]. 能源与节能, 2020, 25(8):51-54,66.
|
|
Wang Zhen, Wang Haixiang. Study on full-day output voltage and power of photovoltaic cells under different weather conditions[J]. Energy and Energy Conservation, 2020, 25(8):51-54,66.
|
| [12] |
任建吉, 位慧慧, 邹卓霖, 等. 基于CNN-BiLSTM-Attention的超短期电力负荷预测[J]. 电力系统保护与控制, 2022, 50(8):109-116.
|
|
Ren Jianji, Wei Huihui, Zou Zhuolin, et al. Ultra-short-term power load forecasting based on CNN-BiLSTM-Attention[J]. Power System Protection and Control, 2022, 50(8):109-116.
|
| [13] |
李荣. 利用卷积神经网络的显著性区域预测方法[J]. 重庆邮电大学学报(自然科学版), 2019, 31(1):37-43.
|
|
Li Rong. A significant regional prediction method using convolutional neural network[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition), 2019, 31(1):37-43.
|
| [14] |
曾囿钧, 肖先勇, 徐方维, 等. 基于CNN-BiGRU-NN模型的短期负荷预测方法[J]. 中国电力, 2021, 54(9):17-23.
|
|
Zeng Youjun, Xiao Xianyong, Xu Fangwei, et al. Short-term load forecasting method based on CNN-BiGRU-NN model[J]. Electric Power, 2021, 54(9):17-23.
|
| [15] |
王童. 基于MSWOA改进Attention-BiGRU模型的电力负荷预测[J]. 软件导刊, 2023, 22(10):84-89.
|
|
Wang Tong. Power load forecasting based on MSWOA improved Attention-BiGRU model[J]. Software Guide, 2023, 22(10):84-89.
|
| [16] |
常青松, 杨昭, 杨熠辉, 等. 基于相似日聚类的超短期光伏功率组合预测模型[J]. 热力发电, 2023, 52(11):123-131.
|
|
Chang Qingsong, Yang Zhao, Yang Yihui, et al. Ultrashort term photovoltaic power combinatorial forecasting model based on similar day clustering[J]. Thermal Power Generation, 2023, 52(11):123-131.
|
| [17] |
叶林, 宫婷, 宋旭日, 等. 基于波动类型精细划分与聚类的短期负荷预测[J]. 电网技术, 2023, 47(3):998-1013.
|
|
Ye Lin, Gong Ting, Song Xuri, et al. Short-term load forecasting based on fine division and clustering of fluctuation types[J]. Power System Technology, 2023, 47(3):998-1013.
|
| [18] |
孙辉, 杨帆, 高正男, 等. 考虑特征重要性值波动的MI-BILSTM短期负荷预测[J]. 电力系统自动化, 2022, 46(8):95-103.
|
|
Sun Hui, Yang Fan, Gao Zhengnan, et al. Short-term load forecasting based on mutual information and Bi-direction long short-term memory network considering fluctuation in importance values of features[J]. Automation of Electric Power Systems, 2022, 46(8):95-103.
|
| [19] |
陈美珍. 基于聚类算法及组合模型的光伏发电功率短期预测[D]. 福州: 福建工程学院, 2022:1-68.
|
|
Chen Meizhen. Short-term prediction of photovoltaic power generation based on clustering algorithm and combined model[D]. Fuzhou: Fujian University of Technology, 2022:1-68.
|
| [20] |
胡兵, 詹仲强, 陈洁, 等. 基于PCA-GA-Elman的短期光伏出力预测研究[J]. 太阳能学报, 2020, 41(6):256-263.
|
|
Hu Bing, Zhan Zhongqiang, Chen Jie, et al. Prediction research on short-term photovoltaic output based on PCA-GA-Elman[J]. Acta Energiae Solaris Sinica, 2020, 41(6):256-263.
|