电子科技 ›› 2025, Vol. 38 ›› Issue (8): 79-86.doi: 10.16180/j.cnki.issn1007-7820.2025.08.011

• • 上一篇    下一篇

基于相似天气波动分型的短期光伏发电功率预测

王林, 王林先, 李伟硕, 王涛(), 雒志恒, 朱家君   

  1. 山东建筑大学 信息与电气工程学院,山东 济南 250101
  • 收稿日期:2024-01-30 修回日期:2024-02-20 出版日期:2025-08-15 发布日期:2025-07-10
  • 通讯作者: 王涛(1967-),男,E-mail:wlyiran@126.com,教授。研究方向:智能控制与机器人系统。
  • 作者简介:王林(1996-),男,硕士研究生。研究方向:智能控制与机器人系统。
  • 基金资助:
    山东省科技型中小企业创新能力提升工程(2023TSGC0213)

Short-Term Photovoltaic Power Generation Forecasting Based on Similar Weather Fluctuation Patterns

WANG Lin, WANG Linxian, LI Weishuo, WANG Tao(), LUO Zhiheng, ZHU Jiajun   

  1. The School of Information and Electrical Engineering,Shandong Jianzhu University,Jinan 250101,China
  • Received:2024-01-30 Revised:2024-02-20 Online:2025-08-15 Published:2025-07-10
  • Supported by:
    Shandong Province Science and Technology-Based Small and Medium-Sized Enterprises Innovation Capacity Enhancement Project(2023TSGC0213)

摘要:

针对光伏出力受天气波动影响较大,天气输入特征分布分散导致预测精度不高的问题,文中提出一种考虑相似天气波动分型的短期光伏发电功率预测模型。通过相关性分析筛选出强相关性气象因子作为输入数据,利用主成分分析法将多维天气特征数据聚合成一维综合气象数据,利用综合气象数据的波动特征来代表大部分天气数据的波动特征。为了使聚类后的波动特征更集中,采用综合气象数据的5个统计指标作为K-means聚类算法的聚类特征,对天气数据进行分型。使用基于双通道卷积神经网络(Convolutional Neural Networks, CNN)的双向门控循环网络(Bidirectional Gated Recurrent Unit, BiGRU)-Attention预测模型对3种天气类型下的光伏发电数据分别进行预测。通过对天气数据分型使具有相似波动的天气特征更集中。相较于传统算法,所提预测方法的精度更高,验证了所提方法和模型的有效性。

关键词: 光伏发电, 天气分型, 相关性分析, 主成分分析, 卷积神经, 统计指标, K-means聚类, BiGRU-ATT模型

Abstract:

In view of the problem that photovoltaic power output is greatly affected by weather fluctuations and the distribution of weather input features is scattered resulting in low prediction accuracy, this study proposes a short-term photovoltaic power prediction model considering similar weather fluctuation fractals. Strongly correlated weather factors are screened as input data through correlation analysis. Multi-dimensional weather features are aggregated into one-dimensional comprehensive weather data using principal component analysis, and the fluctuation features of the comprehensive weather data are used to represent the fluctuation features of most of the weather data. To make the fluctuation characteristics after clustering more concentrated, five statistical indicators of the comprehensive weather data were used as the clustering features of the K-means clustering algorithm to typify the weather data. A BiGRU(Bidirectional Gated Recurrent Unit)-Attention prediction model based on two-channel CNN(Convolutional Neural Networks) is used to predict the photovoltaic power generation data under three weather types. Compared with the traditional algorithm, the accuracy of the proposed prediction method is higher, which verifies the effectiveness of the proposed method and model.

Key words: photovoltaic power, weather typing, correlation analysis, principal component analysis, convolutional neural, statistical indicators, K-means clustering, BiGRU-ATT model

中图分类号: 

  • TP183