[1]Hyvarinen A,Karhunen J,Oja E.Independent component analysis[M].New York:Wiley,2001.
[2]Ji Min Y,Xiao Long Z,Xian Da Z,Adaptive blind separation with an unknown number of sources[J].Neural Computation,2004,16(8):1641-1660.
[3]Cichocki A,Karhunen J,Kasprzak W,et al.Neural networks for blind separation with unknown number of sources[J].Neuro Computing,1999,24(2):55-93.
[4]冶继民,张贤达,朱孝龙.信源数目未知和动态变化时的盲信号分离[J].中国科学:E辑,2005,35(12):1-12.
[5]冶继民,金海红,楼顺天,等.未知源信号数目投影自然梯度盲信号分离算法[J].西安电子科技大学学报:自然科学版,2006,33(2):190-194.
[6]张贤达,保铮.盲信号分离[J].电子学报,2001,29(12):1766-1771.
[7]Amari S.Natural gradient works efficiently in learning[J].Neural Computation,1998,10(2):251-276.
[8]Amari S.Natural gradient for over-and under-complete bases in ICA[J].Neural Computation,1999,11(8):1875-1883.
[9]Xiao Long Z,Xian Da Z,Ji Min Y,Natural gradient-based recursive least squares algorithm for blind source separation[J].Sci.China Ser.F,2004,47(1):55-65.
[10]Amari S.Neural learning in structured parameter space:Neural Riemannian gradient[M].Cambridge,MA:MIT Press,1997.
[11]Hyvarinen A.Fast and robust fixed-point algorithms for independent component analysis[J].IEEE Transactions on Neural Networks,1999,10(3):626-634.
[12]Cichocki A,Sabala I,Choi S,et al.Self-adaptive independent component analysis for sub-Gaussian and super-Gaussian mixtures with unknown number of source signals and additive noise[C].International Sympily on Nonlinear Theory and Applications,1997.
[13]金海红,冶继民.源信号个数未知的超定盲信号分离的半参数统计算法[J].西安电子科技大学学报:自然科学版,2003,30(6):844-848. |