电子科技 ›› 2020, Vol. 33 ›› Issue (12): 17-21.doi: 10.16180/j.cnki.issn1007-7820.2020.12.004

• • 上一篇    下一篇

基于稠密轨迹特征的动态手势识别研究

王贺贺,李菲菲,陈虬   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2019-09-19 出版日期:2020-12-15 发布日期:2020-12-22
  • 作者简介:王贺贺(1989-),男,硕士研究生。研究方向:图像处理与模式识别。|李菲菲(1970-),女,博士,教授。研究方向:多媒体信息处理、图像处理与模式识别、信息检索等。|陈虬(1972-),男,博士,教授,博士生导师。研究方向:图像处理与模式识别、计算机视觉、信息检索等。
  • 基金资助:
    上海市高校特聘教授(东方学者)岗位计划(ES2015XX)

Research on Dynamic Gesture Recognition Based on Dense Trajectories Features

WANG Hehe,LI Feifei,CHEN Qiu   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093, China
  • Received:2019-09-19 Online:2020-12-15 Published:2020-12-22
  • Supported by:
    Program for Professor of Special Appointment(Eastern Scholar) at Shanghai Institutions of Higher Learning(ES2015XX)

摘要:

针对目前手势识别特征点检测的低效性,文中提出一种新的边缘特征点检测方法。文中方法通过借鉴稠密轨迹方法的特征描述方式,利用支持向量机分类学习的方法实现动态手势识别。该方法能够有效增加边缘轨迹的数量,从而给最终的识别带来裨益。利用剑桥大学手势数据集和谢菲尔德手势数据集进行性能评估,所提方法分别获得了99.11%与99.72%手势识别精度,体现了新算法在上述数据集中的优异性。

关键词: 手势识别, 边缘特征, 稠密光流, 边缘轨迹, 特征降维, Fisher向量, 支持向量机

Abstract:

In view of at the low performance of feature point detection for gesture recognition, the paper propose a new edge feature point detection method. By using the feature description method of the dense trajectories method, the method of support vector machine classification learning is uses to realize dynamic gesture recognition. This method increases the number of edge trajectories effectively, which brings benefits to the final recognition result. The method is evaluated in Cambridge University Gesture Dataset and Sheffield Gesture Dataset, and 99.11% and 99.72% gesture recognition accuracy is obtained respectively, which embodies the excellent performance of the algorithm in the above datasets.

Key words: gesture recognition, edge feature, dense optical flow, edge trajectories, feature reduction, Fisher vector, support vector machine

中图分类号: 

  • TP391