[1] |
Wang C, Liu Z, Chan S C. Superpixel-based hand gesture recognition with kinect depth camera[J]. IEEE Transactions on Multimedia, 2015,17(1):29-39.
doi: 10.1109/TMM.2014.2374357
|
[2] |
Ren Z, Yuan J, Meng J, et al. Robust part-based hand gesture recognition using kinect sensor[J]. IEEE Transactions on Multimedia, 2013,15(5):1110-1120.
doi: 10.1109/TMM.2013.2246148
|
[3] |
Hikawa H, Kaida K. Novel FPGA implementation of hand sign recognition system with SOM-hebb classifier[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015,25(1):153-166.
doi: 10.1109/TCSVT.2014.2335831
|
[4] |
Marin G, Dominio F, Zanuttigh P. Hand gesture recognition with leap motion and kinect devices[C]. Paris:IEEE International Conference on Image Processing, 2014.
|
[5] |
Kuznetsova A, Laura Leal-Taixé, Rosenhahn B. Real-time sign language recognition using a consumer depth camera[C]. Sydney:IEEE International Conference on Computer Vision Workshops, 2013.
|
[6] |
Yao Y, Fu Y. Contour model-based hand-gesture recognition using the kinect sensor[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014,24(11):1935-1944.
doi: 10.1109/TCSVT.2014.2302538
|
[7] |
Prasuhn L, Oyamada Y, Mochizuki Y, et al. A HOG-based hand gesture recognition system on a mobile device[C]. Paris:IEEE International Conference on Image Processing, 2014.
|
[8] |
Schramm R, Jung C R, Miranda E R. Dynamic time warping for music conducting gestures evaluation[J]. IEEE Transactions on Multimedia, 2015,17(2):243-255.
doi: 10.1109/TMM.2014.2377553
|
[9] |
Lian S, Hu W, Wang K. Automatic user state recognition for hand gesture based low-cost television control system[J]. IEEE Transactions on Consumer Electronics, 2014,60(1):107-115.
|
[10] |
Sathayanarayana S, Satzoda R K, Carini A, et al. Towards automated understanding of student-tutor interactions using visual deictic gestures[C]. Columbus:IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2014.
|
[11] |
程文山. 基于肤色分割和 Camshift 的手势识别研究[D]. 武汉:华中师范大学, 2009.
|
|
Cheng Wenshan. The research of hand gesture recognition based on skin color and Camshift algorithm[D]. Wuhan: Central China Normal University, 2009.
|
[12] |
Ruan X, Tian C. Dynamic gesture recognition based on improved DTW algorithm[C]. Beijing:IEEE International Conference on Mechatronics and Automation, 2015.
|
[13] |
Zhang M, Wang B, Zhou S, et al. Dynamic gesture recognition based on edge feature enhancement using sobel operator[C]. Bournemouth:International Conference on Technologies for E-learning and Digital Entertainment, 2017.
|
[14] |
Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2):91-110.
doi: 10.1023/B:VISI.0000029664.99615.94
|
[15] |
Wang H, Klaser A, Schmid C, et al. Action recognition by dense trajectories[C]. Providence:Computer Vision and Pattern Recognition, 2011.
|
[16] |
Gunnar Farnebäck. Two-frame motion estimation based on polynomial expansion[C]. Halmstad:The Thirteeth Scandinavian Conference on Image Analysis, 2003.
|
[17] |
Dollar P, Rabaud V, Cottrell G, et al. Behavior recognition via sparse spatio-temporal features[C]. Beijing:IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2005.
|
[18] |
Dalal N, Triggs B. Histograms of oriented gradients for human detection[C]. San Diego:IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005.
|
[19] |
Laptev I, Marszalek M, Schmid C, et al. Learning realistic human actions from movies[C]. Anchorage:IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2008.
|
[20] |
Dalal N, Triggs B, Schmid C, et al. Human detection using oriented histograms of flow and appearance[C]. Graz: European Conference on Computer Vision, 2006.
|
[21] |
Perronnin F, Sanchez J, Mensink T, et al. Improving the fisher kernel for large-scale image classification[C]. Heraklion:European Conference on Computer Vision, 2010.
|
[22] |
Xu H, Tian Q, Wang Z, et al. A survey on aggregating methods for action recognition with dense trajectories[J]. Multimedia Tools and Applications, 2016,75(10):5701-5717.
doi: 10.1007/s11042-015-2536-2
|
[23] |
Fan R, Chang K, Hsieh C, et al. Liblinear: a library for large linear classification[J]. Journal of Machine Learning Research, 2008,9(8):1871-1874.
|
[24] |
Kim T, Wong S, Cipolla R, et al. Tensor canonical correlation analysis for action classification[C]. Minneapolis:IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2007.
|
[25] |
Liu L, Shao L. Learning discriminative representations from RGB-D video data[C]. Beijing:International Joint Conference on Artificial Intelligence, 2013.
|
[26] |
Shao L, Cai Z, Liu L, et al. Performance evaluation of deep feature learning for RGB-D image/video classification[J]. Information Sciences, 2017,385(C):266-283.
|
[27] |
Liu M, Liu H, Chen C. 3D action recognition using multi-scale energy-based global ternary image[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018,28(8):1824-1838.
doi: 10.1109/TCSVT.2017.2655521
|
[28] |
Reza A, Maryam A A, Shohreh K, et al. Dynamic 3D hand gesture recognition by learning weighted depth motion maps[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2019,29(6):1729-1740.
doi: 10.1109/TCSVT.76
|
[29] |
Xing M, Hu J, Feng Z, et al. Dynamic hand gesture recognition using motion pattern and shape descriptors[J]. Multimedia Tools and Applications, 2019,78(8):10649-10672.
doi: 10.1007/s11042-018-6553-9
|
[30] |
Hsieh C, Lin W. Video-based human action and hand gesture recognition by fusing factored matrices of dual tensors[J]. Multimedia Tools and Applications, 2017,76(6):7575-7594.
doi: 10.1007/s11042-016-3407-1
|
[31] |
Patil A R, Subbaraman S. A spatiotemporal approach for vision-based hand gesture recognition using Hough transform and neural network[J]. Signal, Image and Video Processing, 2019,13(2):413-421.
doi: 10.1007/s11760-018-1370-1
|
[32] |
Li J, Huai H, Gao J, et al. Spatial-temporal dynamic hand gesture recognition via hybrid deep learning model[J]. Journal on Multimodal User Interfaces, 2019(9):1-9.
|
[33] |
Tang H, Liu H, Xiao W, et al. Fast and robust dynamic hand gesture recognition via key frames extraction and feature fusion[J]. Neurocomputing, 2019,33(1):424-433.
|