电子科技 ›› 2023, Vol. 36 ›› Issue (4): 9-20.doi: 10.16180/j.cnki.issn1007-7820.2023.04.002

• • 上一篇    下一篇

基于分峰思想的煤岩显微组分识别与统计分析

陈纯1,舒慧生1,阚秀2,孙维周3   

  1. 1.东华大学 理学院,上海 201620
    2.上海工程技术大学 电子电气工程学院,上海 201620
    3.安徽工业大学 冶金工程学院,安徽 马鞍山 243002
  • 收稿日期:2021-10-21 出版日期:2023-04-15 发布日期:2023-04-21
  • 作者简介:陈纯(1997-),女,硕士研究生。研究方向:图像处理和数据分析。|舒慧生(1965-),男,博士,教授。研究方向:随机分析。|阚秀(1983-),女,博士,副教授。研究方向:智能感知、智能控制、数据分析。|孙维周(1983-),男,博士。研究方向:冶金焦炭质量评价与预测、精细化配煤和低碳炼铁新技术。
  • 基金资助:
    国家自然科学基金(62073071)

Identification and Statistical Analysis of Coal Macerals Based on the Idea of Peak Splitting

CHEN Chun1,SHU Huisheng1,KAN Xiu2,SUN Weizhou3   

  1. 1. College of Science,Donghua University,Shanghai 201620,China
    2. School of Electronic and Electrical Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
    3. School of Metallurgical Engineering,Anhui University of Technology, Ma'anshan 243002,China
  • Received:2021-10-21 Online:2023-04-15 Published:2023-04-21
  • Supported by:
    National Natural Science Foundation of China(62073071)

摘要:

针对现有方法识别煤岩显微组分准确率低的问题,文中提出了一种基于分峰思想的煤岩显微组分识别与统计分析方法。文中从单颗粒角度确定各煤种的镜质组峰值偏移范围,并提出自适应寻峰算法选取煤岩颗粒的有效峰值点。在煤岩显微组分识别阶段设计多策略的分峰峰位识别算法将煤岩颗粒分类为需要分峰聚类的活惰结合颗粒和无需分峰的纯镜质组颗粒、惰质组颗粒和壳质组颗粒,确定需要分峰聚类煤岩颗粒的分峰峰位,然后基于分峰规则和统计学方法进行高斯拟合,分别确定壳质组阈值、镜质组阈值和惰质组阈值,完成各煤岩颗粒的聚类分割。实验结果表明,文中方法能够有效识别单个煤岩颗粒并实现显微组分含量的定量统计,准确率达到 96.85%,熵值最小低至 0.615 3,与传统方法相比准确性更高,具有较好的现实应用意义。

关键词: 煤岩显微组分, 分峰思想, 统计分析方法, 自适应寻峰算法, 煤岩颗粒, 多策略, 分峰规则, 高斯拟合, 聚类

Abstract:

In view of the low accuracy of the existing methods to identify coal macerals, a method for identifying and statistical analysis of coal macerals based on the idea of peak splitting is proposed in this study. The peak offset range of vitrinite of each coal type is determined from the point of view of individual particle, and an adaptive peak finding algorithm is proposed to select the effective peak point of coal and rock particles. In the coal macerals identification stage, the multi-strategy peak position identification algorithm is designed to classify the coal and rock particles into active-inert particles requiring peak clustering and pure vitrinite particles, inertinite particles and exinite particles without peak clustering, and the peak positions of coal and rock particles requiring peak clustering are selected. Then, Gaussian fitting is carried out based on peak splitting rules and statistical methods to determine the threshold values of exinite, vitrinite, and inertinite respectively, and complete the clustering and segmentation of coal and rock particles. The experimental results show that the proposed method can effectively identify single coal particles and realize quantitative statistics of maceral content, with an accuracy of 96.85% and the minimum entropy of 0.615 3. Compared with the traditional method, the proposed method has higher accuracy and has better practical application significance.

Key words: coal macerals, the idea of peak splitting, statistical analysis method, adaptive peak finding algorithm, coal and rock particles, multi-strategy, peak splitting rules, Gaussian fitting, clustering

中图分类号: 

  • TQ531