电子科技 ›› 2023, Vol. 36 ›› Issue (9): 1-7.doi: 10.16180/j.cnki.issn1007-7820.2023.09.001

• •    下一篇

基于FA-SVR-LSTM组合模型的短期电力负荷预测

文彦飞,王万雄   

  1. 甘肃农业大学 理学院,甘肃 兰州 730070
  • 收稿日期:2022-03-24 出版日期:2023-09-15 发布日期:2023-09-18
  • 作者简介:文彦飞(1997-),男,硕士研究生。 研究方向:机器学习。|王万雄(1964-),男,博士,教授。研究方向:应用数学与统计。
  • 基金资助:
    国家自然科学基金(11971214)

Short-Term Power Load Forecasting Based on FA-SVR-LSTM Combined Model

WEN Yanfei,WANG Wanxiong   

  1. College of Sciences,Gansu Agricultural University,Lanzhou 730070,China
  • Received:2022-03-24 Online:2023-09-15 Published:2023-09-18
  • Supported by:
    National Natural Science Foundation of China(11971214)

摘要:

短期电力负荷预测作为维护电网系统运行和分析的基础,为电网系统的经济调度、安全分析提供了判断依据和信息,对维护电网系统的正常运行具有重要作用。文中采用萤火虫算法(Firefly Algorithm,FA)将SVR(Support Vector Regression)模型的惩罚因子c、核参数g和LSTM(Long Short-Term Memory)模型的神经元个数m、学习率lr进行优化,利用寻优的最佳参数建立FA-SVR-LSTM组合预测模型,并对样本数据进行预测。以佛罗里达州电力负荷历史数据为例,建立LSTM、SVR、FA-SVR和FA-LSTM4种参照模型,对该地15天360 h的电力负荷进行预测,并与FA-SVR-LSTM预测结果作比较。实验结果表明,FA-SVR-LSTM模型与LSTM模型和SVR模型相比,预测精度分别提高了33.184 9%、 30.326 5%,且MAPE(Mean Absolute Percent Error)和RMSE(Root Mean Square Error)两种误差指标评价值低于其它4种模型。相比于其他模型,FA-SVR-LSTM组合模型预测效果得到了显著提高。

关键词: 电力负荷预测, 预测精度, 萤火虫算法, 长短期记忆神经网络, 支持向量回归, 组合模型, 参数寻优, 误差评价

Abstract:

As the basis for maintaining the operation and analysis of the power grid system, short-term power load forecasting provides judgment basis and information for the economic dispatch and safety analysis of the power grid system, and plays an important role in maintaining the normal operation of the power grid system. In this study, the FA(Firefly Algorithm) is used to optimize the penalty factor c, nuclear parameter g of SVR(Support Vector Regression) model and the number of neurons m and learning rate lr of LSTM(Long Short-Term Memory) model. The FA-SVR-LSTM combined prediction model is established using the optimal parameters, and the sample data are predicted. Taking the historical data of power load of Florida as an example, four reference models of LSTM, SVR, FA-SVR and FA-LSTM are established to predict the power load of 360 h in 15 days, and the results are compared with those of FA-SVR-LSTM. The experimental results show that compared with LSTM and SVR model, the prediction accuracy of FA-SVR-LSTM model is improved by 33.184 9% and 30.326 5%, respectively. The evaluation values of MAPE and RMSE are significantly lower than those of the other four models. These results indicate that the prediction effect of FA-SVR-LSTM combined model is significantly improved when compared with other models.

Key words: power load forecasting, prediction accuracy, firefly algorithm, long short-term memory neural network, support vector regression, combination model, parameter optimization, error evaluation

中图分类号: 

  • TP18