[1] |
孟凡喜, 屈鸿, 侯孟书. 基于GA和SVM的电力负荷预测方法研究[J]. 计算机科学, 2014, 41(S1):91-93.
doi: 10.1063/1.31270
|
|
Meng Fanxi, Qu Hong, Hou Mengshu. Method of short-term load forecasting based on GA and SVM[J]. Computer Science, 2014, 41(S1):91-93.
doi: 10.1063/1.31270
|
[2] |
Shi J W, Zhang Y. Short-term power load forecasting based on machine learning[J]. International Core Journal of Engineering, 2021, 7(6):333-341.
|
[3] |
彭荣杰, 彭亚雄, 陆安江. 基于改进PCA+SVM的人脸识别系统[J]. 电子科技, 2021, 34(12):56-61.
|
|
Peng Rongjie, Peng Yaxiong, Lu Anjiang. Face recognition system based on improved PCA+SVM[J]. Electronic Science and Technology, 2021, 34(12):56 -61.
|
[4] |
Lan Y, Xue L B, Liao X. Short-term power load forecasting based on RBF neural network[J]. International Core Journal of Engineering, 2021, 7(5):51-59.
|
[5] |
叶远胜, 张静. 基于时间序列的SVM短时电力负荷预测[J]. 现代信息科技, 2020, 4(24):17-19.
|
|
Ye Yuansheng, Zhang Jing. SVM short-term power load forecasting based on time series[J]. Modern Information Technology, 2020, 4(24):17-19.
|
[6] |
王世芳, 鲍程程. 智能算法在电网负荷预测中的应用研究[J]. 安徽工程大学学报, 2021, 36(5):32-38.
|
|
Wang Shifang, Bao Chengcheng. Research on application of intelligent algorithm in power grid load forecasting[J]. Journal of Anhui Polytechnic University, 2021, 36(5):32-38.
|
[7] |
王瑞, 周晨曦, 逯静. 基于组合模型的短期电力负荷预测研究[J]. 软件导刊, 2017, 16(10):150-153.
|
|
Wang Rui, Zhou Chenxi, Lu Jing. Research on short-term power load forecasting based on combination model[J]. Software Guide, 2017, 16(10):150-153.
|
[8] |
李焱, 贾雅君, 李磊, 等. 基于随机森林算法的短期电力负荷预测[J]. 电力系统保护与控制, 2020, 48(21):117-124.
|
|
Li Yan, Jia Yajun, Li Lei, et al. Short-term power load forecasting based on stochastic forest algorithm[J]. Power System Protection and Control, 2020, 48(21):117-124.
|
[9] |
王帅哲, 王金梅, 王永奇, 等. 基于改进遗传算法的BP神经网络短期电力负荷预测[J]. 国外电子测量技术, 2019, 38(1):15-18.
|
|
Wang Shuizhe, Wang Jinmei, Wang Yongqi, et al. BP neural network short-term power load forecasting based on improved genetic algorithm[J]. Foreign Electronic Measurement Technology, 2019, 38(1):15-18.
|
[10] |
曾德明. 电力负荷的预测方法的建模与仿真[J]. 计算机仿真, 2011, 28(12):331-334.
|
|
Zeng Deming. Modeling and simulation of power load prediction[J]. Computer Simulation, 2011, 28(12):331-334.
|
[11] |
于惠鸣, 张智晟, 龚文杰, 等. 基于深度递归神经网络的电力系统短期负荷预测模型[J]. 电力系统及其自动化学报, 2019, 31(1):112-116.
|
|
Yu Huiming, Zhang Zhisheng, Gong Wenjie, et al. Short-term load forecasting model of power system based on deep recursive neural network[J]. Proceedings of the CSU-EPSA, 2019, 31(1):112-116.
|
[12] |
卓东. 组合预测模型研究及其在电力负荷预测中的应用[D]. 兰州: 兰州商学院, 2007:23-26.
|
|
Zhuo Dong. Research on combined forecasting model and its application in power load forecasting[D]. Lanzhou: Lanzhou Business School, 2007:23-26.
|
[13] |
魏腾飞, 潘庭龙. 基于改进PSO优化LSTM网络的短期电力负荷预测[J]. 系统仿真学报, 2021, 33(8):1866-1874.
doi: 10.16182/j.issn1004731x.joss.20-0297
|
|
Wei Tengfei, Pan Tinglong. Short-term power load forecasting based on LSTM neural network optimized by improved PSO[J]. Journal of System Simulation, 2021, 33(8):1866-1874.
doi: 10.16182/j.issn1004731x.joss.20-0297
|
[14] |
余晓晓. 基于改进LSTM-SVR的预测模型及其在烟草行业的应用研究[D]. 武汉: 华中科技大学, 2020:12-45.
|
|
Yu Xiaoxiao. Prediction model based on improved LSTM-SVR and its application in tobacco industry[D]. Wuhan: Huazhong University of Science and Technology, 2020:12-45.
|
[15] |
罗学科, 何云霄, 刘鹏, 等. ARIMA-SVR组合方法在水质预测中的应用[J]. 长江科学院院报, 2020, 37(10):21-27.
doi: 10.11988/ckyyb.201908087
|
|
Luo Xueke, He Yunxiao, Liu Peng, et al. Application of ARIMA-SVR combination method in water quality prediction[J]. Journal of Yangtze River Academy of Sciences, 2020, 37(10):21-27.
doi: 10.11988/ckyyb.201908087
|
[16] |
徐林峰. 识别水下典型目标图像的学习方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2018:53-54.
|
|
Xu Linfeng. Research on the learning method of identifying typical underwater target images[D]. Harbin: Harbin Engineering University, 2018:53-54.
|
[17] |
江娜. SVM及其在船舶航向控制系统故障预报中的应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2008:37-38.
|
|
Jiang Na. SVM and its application in fault prediction of ship heading control system[D]. Harbin: Harbin Engineering University, 2008:37-38.
|
[18] |
秦玉平. 基于支持向量机的文本分类算法研究[D]. 大连: 大连理工大学, 2008:26-27.
|
|
Qin Yuping. Research on text classification algorithm based on support vector machine[D]. Dalian: Dalian University of Technology, 2008:26-27.
|
[19] |
Fister I, Fister J I, Yang X S. A comprehensive review of firefly algorithms[J]. Swarm and Evolutionary Computation, 2013, 13(11):34-36.
doi: 10.1016/j.swevo.2013.06.001
|
[20] |
张建科, 王高峰, 尹露洋. 一类约束不可微优化问题的极大熵萤火虫算法[J]. 西安邮电大学学报, 2017, 22(5):94-100.
|
|
Zhang Jianke, Wang Gaofeng, Yin Luyang. Maximum entropy firefly algorithm for a class of constrained non-differentiable optimization problems[J]. Journal of Xi'an University of Posts and Telecommunications, 2017, 22(5):94-100.
|
[21] |
沈佳煜. 不确定情形下若干排序问题的研究[D]. 南京: 南京理工大学, 2016:66-67.
|
|
Shen Jiayu. Research on some sorting problems under uncertainty[D]. Nanjing: Nanjing University of Science and Technology, 2016:66-67.
|
[22] |
顾乾晖, 胡翌, 涂振宇. 基于PSO-SVR-LSTM水位预测模型研究[J]. 江西水利科技, 2021, 47(4):278-284.
|
|
Gu Qianhui, Hu Yi, Tu Zhenyu. Research on water level prediction model based on PSO-SVR-LSTM[J]. Jiangxi Water Science and Technology, 2021, 47(4):278-284.
|