电子科技 ›› 2023, Vol. 36 ›› Issue (9): 21-28.doi: 10.16180/j.cnki.issn1007-7820.2023.09.004

• • 上一篇    下一篇

基于粒子群优化的TDOA声源定位方法

张大桂1,周志峰1,张怡2,王立端3   

  1. 1.上海工程技术大学 机械与汽车工程学院,上海 201620
    2.上海市松江区新桥职业技术学校,上海 201612
    3.上海司南卫星导航技术股份有限公司,上海 201801
  • 收稿日期:2022-04-19 出版日期:2023-09-15 发布日期:2023-09-18
  • 作者简介:张大桂(1996-),男,硕士研究生。研究方向:阵列信号处理算法。|周志峰(1976-),男,博士,副教授。研究方向:计算机测控、数字信号处理。
  • 基金资助:
    上海市科学技术委员会科研基金(17511106700)

TDOA Sound Source Localization Method Based on Particle Swarm Optimization Algorithm

ZHANG Dagui1,ZHOU Zhifeng1,ZHANG Yi2,WANG Liduan3   

  1. 1. School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China
    2. Shanghai Songjiang Xinqiao Vocational and Technical School,Shanghai 201612,China
    3. Shanghai Compass Satellite Navigation Technology Co.,Ltd., Shanghai 201801,China
  • Received:2022-04-19 Online:2023-09-15 Published:2023-09-18
  • Supported by:
    Scientific Research Fund of Science and Technology Commission of Shanghai Municipality(17511106700)

摘要:

针对平面麦克风阵列的声源三维坐标估计问题,文中在TDOA(Time Difference of Arrival)声源定位算法中引入粒子群优化算法进行位置估计。利用PHAT(Phase Transform)加权函数的广义互相关法计算得到时延差的真实值,结合麦克风的坐标位置,通过几何关系计算出假设声源到达麦克风之间的时延差的估计值。设计时延真实值和估计值差值的平方和为粒子适应度函数,利用粒子群优化算法搜索空间中符合适应度函数的声源点,实现声源位置估计。仿真结果表明,在计算速度与球形插值法相近的情况下,文中所提算法比球形插值法具有更好的鲁棒性和抗噪性。

关键词: 麦克风阵列, 粒子群优化算法, TDOA, 声源定位, 时延估计, 位置估计, 广义互相关, 球形插值法

Abstract:

In order to solve the problem of 3D coordinate estimation of sound source based on planar microphone array, this study introduces particle swarm optimization algorithm in TDOA(Time Difference of Arrival) sound source localization algorithm. The true value of the delay difference is calculated using the generalized cross-correlation method of the PHAT(Phase Transform) weighting function. Combined with the coordinate position of the microphone, the estimated value of the delay difference between the hypothetical sound source arriving at the microphone is calculated through the geometric relationship. The sum of the squares of the error between the actual value and the estimated value of the design delay is the particle fitness function. The particle swarm optimization algorithm is used to search for the sound source points in the space that conform to the fitness function, so as to realize the sound source position estimation. The simulation results show that the proposed algorithm has better robustness and noise resistance than the spherical interpolation method when the calculation speed is similar to that of the spherical interpolation method.

Key words: microphone array, particle swarm optimization algorithm, TDOA, sound source localization, delay estimation, location estimation, generalized cross correlation, spherical interpolation method

中图分类号: 

  • TP912