›› 2014, Vol. 27 ›› Issue (10): 115-.

• 论文 • 上一篇    下一篇

基于混合方式的贝叶斯网络结构学习

张燕,朱明敏,宋苏鸣   

  1. (西安电子科技大学 数学系,陕西 西安 710071)
  • 出版日期:2014-10-15 发布日期:2014-10-17
  • 作者简介:张燕(1987—),女,硕士研究生。研究方向:贝叶斯网络模型构建与推理。E-mail:zhyandshh@163.com

Structural Learning Bayesian Network Based on a Hybrid Method

ZHANG Yan,ZHU Mingmin,SONG Suming   

  1. (Department of Mathematics,Xidian University,Xi'an 710071,China)
  • Online:2014-10-15 Published:2014-10-17

摘要:

基于最大主子图分解技术和遗传算法,提出了一种混合方式的贝叶斯网络结构学习算法。该算法首先根据领域知识和观察数据构造网络的无向独立图,并对其进行最大主子图分解,再利用遗传算法学习每个子图的结构,同时进行合并修正得到最优的贝叶斯网络结构。分解过程将一个学习大网络问题转化为小子图的学习问题,降低了搜索空间。仿真结果表明,新算法的学习效果与运行效率均有明显提高。

关键词: 贝叶斯网络, Markov边界, 最大主子图分解, 遗传算法

Abstract:

A hybrid algorithm for structure learning of Bayesian network which based on maximal prime decomposition technology and genetic algorithm is proposed.The algorithm first constructs the undirected independence graph of a BN according to domain knowledge and observation data.Then it performs MPD to decompose the undirected graphs.The genetic algorithm is used to learn the local structure and combine the subgraphs then correct them to obtain the final BN.The decomposition splits the problem of learning a large network into some problems of learning small subgraphs.Experimental results show that the learning ability and performance of novel algorithm are improved significantly.

Key words: Bayesian network;Markov boundary;maximal prime decomposition;genetic algorithm

中图分类号: 

  • TP391