›› 2015, Vol. 28 ›› Issue (3): 38-.

• 论文 • 上一篇    下一篇

基于神经网络的铝型材氧化单产能耗计算方法

罗铭强,梁鹏   

  1. (1.广东兴发铝业有限公司,广东 佛山 528061;2.广东工业大学 机电工程学院,广东 广州 510665)
  • 出版日期:2015-03-15 发布日期:2015-03-12
  • 通讯作者: 梁鹏(1981—),男,博士,讲师。研究方向:数据挖掘,低碳制造,模式识别。E-mail:cs_phoenix_liang@163.com
  • 作者简介:罗铭强(1979—),男,工程师。研究方向:有色金属制造,仪表计量。E-mail:8863200@qq.com
  • 基金资助:

    国家科技支撑计划基金资助项目(2012BAF12B10);广东省教育部产学研结合基金资助项目(2012B010500027)

Aluminum Oxide Energy Consumption Computing Method Based on Neural Network

LUO Mingqiang,LIANG Peng   

  1. (1.Xingfa Aluminum Holdings Limited,Foshan 528061,China;
    2.School of Electromechanical Engineering,Guangdong University of Technology,Guangzhou 510006,China)
  • Online:2015-03-15 Published:2015-03-12

摘要:

针对铝型材生产过程中产品的表面氧化单耗计算较为复杂,其主要原因在于影响能耗因素多、加工过程产品类型多、计算标准不统一等。文中提出一种基于神经网络的铝型材表面氧化产品单耗计算方法,该方法首先通过历史数据训练神经网络,得到各个氧化影响因素对成膜系数的影响因子;然后根据实际生产中的能耗影响因素,利用神经网络计算该氧化批次的成膜系数并得到生产能耗;并根据计算的生产能耗与实际计量能耗读数进行对比,验证了方法的有效性。该方法可对铝型材氧化能耗数据进行预测,并可及时发现生产中的能源损失、生产参数不当等异常现象。

关键词: 能耗预测, 阳极氧化, 成膜系数

Abstract:

The energy consumption calculation of aluminum production surface oxidation is very complicated due to many influencing factors,such as multi-type product and inconsistent calculation standard (size,weight,and thickness),etc.In order to solve these problems,this paper proposes an aluminum oxide energy consumption computing method based on neural network.We first train the neural network by using historical data and calculate the influence of the oxidation factor on the coefficient of oxidation.Then the coefficients of oxidation of the batches of oxidation and production energy consumption are calculated according to the trained neural network.Finally,we verify the effectiveness of proposed method by comparing the calculated production energy consumption with the measured data.The experimental result shows that our method can find abnormal energy loss,improper production parameters in the production.

Key words: energy consumption prediction;anodic oxidation;oxidation factor

中图分类号: 

  • TP183