[1] |
王洪伟, 宋媛, 杜战其, 等. 基于在线评论情感分析的快递服务质量评价[J]. 北京工业大学学报, 2017,43(3):403-412.
|
|
Wang Hongwei, Song Yuan, Du Zhanqi, et al. Evaluation of service quality for express industry through sentiment analysis of online reviews[J]. Journal of Beijing University of Technology, 2017,43(3):403-412.
|
[2] |
卿勇, 刘梦娟, 薛浩, 等. OPEN:一个基于评论的商品特征抽取及情感分析框架[J]. 计算机应用与软件, 2018,35(1):65-71.
|
|
Qing Yong, Liu Mengjuan, Xue Hao, et al. OPEN:a framework for product feature extraction and sentiment analysis based on productcomments[J]. Computer Applications and Software, 2018,35(1):65-71.
|
[3] |
马京苗. 网购用户评论中隐式评价对象的提取方法研究.[D]. 北京:北京交通大学, 2017.
|
|
Ma Jingmiao. Research on extraction method of implicit evaluation objects in online user reviews[D]. Beijing:Beijing Jiaotong University, 2017.
|
[4] |
Blei D M, Ng A Y, Jordan M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003,3(3):993-1022.
|
[5] |
李湘东, 廖香鹏, 黄莉. LDA模型下书目信息分类系统的研究与实现[J]. 现代图书情报技术, 2014,30(5):18-25.
|
|
Li Xiaodong, Liao Xiangpeng, Huang Li. Research and implementation of bibliographicinformation classification classification system in LDA model[J]. New Technology of Library and Information Service, 2014,30(5):18-25.
|
[6] |
Putri I R, Kusumaningrum R. Latent Dirichlet Allocation (LDA) for sentiment analysis toward tourism review in indonesia[J]. Journal of Physics:Conference Series, 2017,80(1):1-6
|
[7] |
Wang W, Feng Y, Dai W. Topic analysis of online reviews for two competitive products using latent dirichlet allocation[J]. Electronic Commerce Research & Applications, 2018(7):29-33.
|
[8] |
姬东鸿, 熊蜀峰. 面向产品评论分析的短文本情感主题模型[J]. 自动化学报, 2016,42(8):1227-1237.
|
|
Ji Donghong, Xiong Shufeng. A short text sentiment-topic model for product review analysis[J]. ACTA Automatica Sinica, 2016,42(8):1227-1237.
|
[9] |
Shams M, Baraani Dastjerdi A. Enriched LDA (ELDA): Combination of latent dirichlet allocation with word co-occurrence analysis for aspect extraction[J]. Expert Systems with Applications, 2017,80(6):136-146.
|
[10] |
王伟, 周咏梅, 阳爱民, 等. 一种基于LDA主题模型的评论文本情感分类方法[J]. 数据采集与处理, 2017,32(3):629-635.
|
|
Wang Wei, Zhou Yongmei, Yang Aimin, et al. Method of sentiment analysis for comment texts based on LDA[J]. Journal of Data Acquisition and Processing, 2017,32(3):629-635.
|
[11] |
延丰, 杜腾飞, 毛建华, 等. 基于情感词典与LDA模型的股市文本情感分析[J]. 理论与算法, 2017,40(12):82-87.
|
|
Yan Feng, Du Tengfei, Mao Jianhua, et al. Stock text sentiment analysis based on emotion dictionary and LDA model[J]. Electronic Measurement Technology, 2017,40(12):82-87.
|
[12] |
孙悦, 袁健. 基于Spark的改进随机森林算法[J]. 电子科技, 2019,32(4):60-64.
|
|
Sun Yue, Yuan Jian. Improved random forest algotithm based on Spark[J]. Electronic Science and Technology, 2019,32(4):60-64.
|
[13] |
马勋, 周长胜, 吕学强, 等. 基于SAO结构的非分类关系抽取研究[J]. 计算机工程与应用, 2018,54(8):220-225.
|
|
Ma Xun, Zhou Changsheng, Lü Xueqiang, et al. Extraction of non-taxonomic relation based on SAO structure[J]. Computer Engineering and Application, 2018,54(8):220-225.
|
[14] |
杨荣根, 杨忠. 基于HMM中文词性标注研究[J]. 金陵科技学院学报, 2017,33(1):20-23.
|
|
Yang Ronggen, Yang Zhong. Research of chinese part of speed tagging based on HMM[J]. Journal of Jinling Institute of Technology, 2017,33(1):20-23.
|
[15] |
冯靖, 莫秀良, 王春东. 基于LDA改进的K-means算法在短文本聚类中的研究[J]. 天津理工大学学报, 2018,34(3):7-11.
|
|
Feng Jing, Mo Xiuliang, Wang Chundong. Improved K-means algorithm based on Latent Dirichlet Allocation for short text clustering[J]. Journal of Tianjin University of Technology, 2018,34(3):7-11.
|
[16] |
张志远, 杨宏敬, 赵越. 基于吉布斯采样结果的主题文本网络构建方法[J]. 计算机工程, 2017,43(6):150-157.
doi: 10.3969/j.issn.1000-3428.2017.06.025
|
|
Zhang Zhiyuan, Yang Hongjing, Zhao Yue. Topic text network construction method based on Gibbs sampling results[J]. Compute Engineering, 2017,43(6):150-157.
doi: 10.3969/j.issn.1000-3428.2017.06.025
|
[17] |
何明, 要凯升, 杨芃, 等. 基于标签信息特征相似性的协同过滤个性化推荐[J]. 计算机科学, 2018,45(6A):428-435.
|
|
He Ming, Yao Kaisheng, Yang Peng, et al. Collaborative filtering personalized recommendation based on similarity of tag information feature[J]. Computer Science, 2018,45(S1):428-435.
|
[18] |
Lin Chenghua, He Yulan. Joint sentiment topic model for sentiment analysis[C].New York:Proceedings of the 18th ACM Conference on Information and Knowledge Management, 2009.
|