电子科技 ›› 2021, Vol. 34 ›› Issue (8): 8-13.doi: 10.16180/j.cnki.issn1007-7820.2021.08.002

• • 上一篇    下一篇

基于改进VGG16网络的混合批量训练交通标志识别

廖璐明,张伟   

  1. 上海理工大学 光电信息与计算机工程学院,上海200093
  • 收稿日期:2020-03-23 出版日期:2021-08-15 发布日期:2021-08-17
  • 作者简介:廖璐明(1994-),男,硕士研究生。研究方向:计算机视觉、深度学习。|张伟(1981-),男,博士,副教授。研究方向:最优控制及其应用。
  • 基金资助:
    国家自然科学基金(11502145)

Batch Mixed Training Traffic Sign Recognition Based on Improved VGG16 Network

LIAO Luming,ZHANG Wei   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2020-03-23 Online:2021-08-15 Published:2021-08-17
  • Supported by:
    National Natural Science Foundation of China(11502145)

摘要:

针对现有交通标志识别方法存在的识别率低、识别时间长等缺点,文中在卷积神经网络的基础上提出了一种基于VGG16网络模型的改进卷积神经网络模型。对VGG16网络模型的卷积层数量、卷积核和池化层进行修改,增强网络模型的特征提取能力和精简性。通过随机旋转、伸缩、偏移和对比度调整等方法对实验数据集进行数据增强,并通过激活函数、混合批量训练和提前终止正则化方法提高网络模型的识别率。改进后的VGG16网络模型利用德国交通标志数据集中进行测试,结果显示采用该模型的识别率达到98.98%,单张交通标志识别时间只需要0.24 ms。与其他模型相比,该模型在识别率和识别时间方面均具有明显优势。

关键词: 卷积神经网络, 交通标志识别, VGG16, 卷积层, 池化层, 批量, 特征图, 正则化

Abstract:

In view of the problem of low recognition rate and long recognition time of the existing traffic sign recognition methods, based on convolution neural network method, an improved convolutional neural network model based on VGG16 is proposed. The number of convolution layers, convolution kernels and pooling layers of the VGG16 network model are modified to enhance the feature extraction ability and simplicity of the network model. The experimental datasets are enhanced by random rotation, scaling, offset and contrast adjustment, and the network model recognition rate is improved by activation function, mixed batch training and early termination regularization methods. In the experiment of the German traffic sign recognition benchmark, the recognition rate of the improved VGG16 network model is 98.98%, and the recognition time of single traffic sign is only 0.24 ms. Compared with other models, the proposed model has obvious advantages in recognition rate and recognition time.

Key words: convolutional neural network, traffic sign recognition, VGG16, convolutional layer, pooling layer, batch size, feature map, regularization

中图分类号: 

  • TP391.4