[1] |
Weissbrod A, Shapiro A, Vasserman G, et al. Automated long-term tracking and social behavioural phenotyping of animal colonies within a semi-natural environment[J]. Nat Communications, 2013, 4(1):1-10.
|
[2] |
刁泽浩. 自由活体动物的动态跟踪算法研究[D]. 保定:河北大学, 2018.
|
|
Diao Zehao, Research on dynamic tracking algorithm for free living animals[D]. Baoding:Hebei University, 2018.
|
[3] |
Hong W Z, Kennedy A, Zelikowsky M, et al. Automated measurement of mouse social behaviors using depth sensing, video tracking, and machine learning[J]. Proceedings of the National Academy of Sciences, 2015, 112(38):E5351-E5360.
|
[4] |
Noldus L P, Spink A J, Tegelenbosch R A. EthoVision: a versatile video tracking system for automation of behavioral experiments[J]. Behavior Research Methods, Instruments, & Computers: A Journal of the Psychonomic Society, 2001, 33(3):398-414.
|
[5] |
Rodriguez A, Zhang H Q, Klaminder J, et al. ToxId: an efficient algorithm to solve occlusions when tracking multiple animals[J]. Scientific Reports, 2017, 7(1):186-204.
doi: 10.1038/s41598-017-00286-6
|
[6] |
Altulea A H, Jalab H A, Ibrahim R W. Fractional holder mean-based image segmentation for mouse behavior analysis in conditional place preference test[J]. Signal Image and Video Processing, 2020, 14(1):135-142.
doi: 10.1007/s11760-019-01533-1
|
[7] |
Salem G, Krynitsky J, Hayes M, et al. Three-dimensional pose estimation for laboratory mouse from monocular images[J]. IEEE Transactions on Image Processing, 2019, 28(9):4273-4287.
doi: 10.1109/TIP.2019.2908796
|
[8] |
白桂峰. 基于MEMS惯性传感器的人体步态分析关键技术研究[D]. 太原:中北大学, 2020.
|
|
Bai Guifeng. Research on key technologies of human gait analysis based on MEMS inertial sensor[D]. Taiyuan:North University of China, 2020.
|
[9] |
郝福明. 基于微惯性传感器的生猪异常行为监测[D]. 太原:太原理工大学, 2018.
|
|
Hao Fuming. Abnormal behavior monitoring of pigs based on micro inertial sensor[D]. Taiyuan:Taiyuan University of Technology, 2018.
|
[10] |
倪力. 基于智能穿戴及信息融合的山羊健康状态识别[D]. 合肥:安徽农业大学, 2017.
|
|
Ni Li. Goat health status identification based on smart wear and information fusion[D]. Hefei:Anhui Agricultural University, 2017.
|
[11] |
Barnich O, Van Droogenbroeck M. ViBe: a universal background subtraction algorithm for video sequences[J]. IEEE Transactions on Image Processing, 2011, 20(6):1709-1724.
doi: 10.1109/TIP.2010.2101613
|
[12] |
王春江, 李鹏. 基于ZYNQ的运动目标检测系统设计[J]. 电子科技, 2020, 33(5):82-86.
|
|
Wang Chunjiang, Li Peng. Design of moving target detection system based on ZYNQ[J]. Electronic Science and Technology, 2020, 33(5):82-86.
|
[13] |
郭迎春, 杨飞飞, 师硕. 基于自适应的ViBe运动目标检测方法[J]. 控制工程, 2019, 26(9):1703-1711.
|
|
Guo Yingchun, Yang Feifei, Shi Shuo. Moving object detection methods based on adaptive ViBe[J]. Control Engineering of China, 2019, 26(9):1703-1711.
|
[14] |
王春丹, 谢红薇, 李亚旋, 等. 融合改进的三帧差分和ViBe算法的运动目标检测[J]. 计算机工程与应用, 2020, 56(13):199-203.
|
|
Wang Chundan, Xie Hongwei, Li Yaxuan, et al. Motion object detection with improved three-frame difference and ViBe algorithm[J]. Computer Engineering and Applications, 2020, 56(13):199-203.
|
[15] |
卢艳军, 陈雨荻, 张太宁, 等. 一种实用的四旋翼飞行器姿态融合算法研究[J]. 电光与控制, 2020, 27(8):84-89.
|
|
Lu Yanjun, Chen Yudi, Zhang Taining, et al. A practical quadrotor attitude fusion algorithm[J]. Electronics and Control, 2020, 27(8):84-89.
|
[16] |
米刚, 田增山, 金悦, 等. 基于MIMU和磁力计的姿态更新算法研究[J]. 传感技术学报, 2015, 28(1):43-48.
|
|
Mi Gang, Tian Zengshan, Jin Yue, et al. MIMU update algorithm based on the posture and magnetometer[J]. Chinese Journal of Sensors and Actuators, 2015, 28(1):43-48.
|
[17] |
秦永元. 惯性导航[M]. 北京: 科学出版社, 2006.
|
|
Qin Yongyuan. Inertial navigation[M]. Beijing: Science Press, 2006.
|
[18] |
Sabatini A M. Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing[J]. IEEE Transactions on Biomedical Engineering, 2006, 53(7):1346-1356.
pmid: 16830938
|
[19] |
石青. 基于位姿调节的模糊自适应EKF组合导航算法[J]. 电子设计工程, 2018, 26(10):79-83.
|
|
Shi Qing. Fuzzy adaptive extended Kalman filter based on position and attitude factors in INS/GPS/CNS integrated navigation system[J]. Electronic Design Engineering, 2018, 26(10):79-83.
|