电子科技 ›› 2023, Vol. 36 ›› Issue (2): 7-12.doi: 10.16180/j.cnki.issn1007-7820.2023.02.002

• • 上一篇    下一篇

基于分时电价和用户侧储能的配电网调度优化策略

王玉梅,王露露   

  1. 河南理工大学 电气工程与自动化学院,河南 焦作 454000
  • 收稿日期:2021-07-26 出版日期:2023-02-15 发布日期:2023-01-17
  • 作者简介:王玉梅(1963-),女,教授。研究方向:电力系统和供电技术。|王露露(1996-),女,硕士研究生。研究方向:配电网调度。
  • 基金资助:
    国家自然科学基金(61403130)

Distribution Network Dispatching Optimization Strategy Energy Storage Based on Time-of-Use Electricity Price and User-Side

WANG Yumei,WANG Lulu   

  1. School of Electrical Engineering and Automation,Henan Polytechnic University,Jiaozuo 454003,China
  • Received:2021-07-26 Online:2023-02-15 Published:2023-01-17
  • Supported by:
    National Natural Science Foundation of China(61403130)

摘要:

针对分布式电源接入及负荷波动引起配电网线路损耗增加的问题,文中提出将分时电价机制协同用户侧储能参与配电网的优化运行模型。基于分时电价建立用户负荷响应模型,构建以用户日用电成本、配电网网损最小为目标函数的配电网运行优化模型。采用评价函数法将多目标转化成单目标,并在传统遗传算法中引入模拟退火Metropolis准则对用户侧储能充放电策略寻优。仿真结果证明了文中所提策略能有效降低配电网网损及用户用电成本,所提算法寻优速度较快,收敛性能较好。

关键词: 分布式电源, 需求响应, 分时电价, 用户侧储能, 配电网优化, 评价函数法, 遗传算法, 模拟退火算法

Abstract:

In view of the problem of loss increase of distribution network caused by the access of distributed power and the fluctuation of load, this study proposes an optimal operation model that integrates the time-of-use electricity price mechanism with user-side energy storage to participate in the distribution network. Based on the time-of-use electricity price, a user load response model is established, and a distribution network operation optimization model is constructed with the user's daily electricity cost and the minimum distribution network loss as the objective function. The evaluation function method is used to convert multiple objectives into single objectives, and the simulated annealing Metropolis criterion is introduced into the traditional genetic algorithm to optimize the charging and discharging strategy of the user-side energy storage. The simulation results prove that the proposed strategy can effectively reduce the power loss of the distribution network and the cost of user electricity, which verifies that proposed algorithm has a faster optimization speed and better convergence performance.

Key words: distributed generation, demand response, time-of-use price, user side energy storage, distribution network optimization, evaluation function method, genetic algorithm, simulated annealing algorithm

中图分类号: 

  • TP18