[1] |
颜金尧, 张海龙, 苏毓敏. 计算广告中的点击率和转化率预测研究[J]. 中国传媒大学学报(自然科学版), 2021, 28(2):54-60.
|
|
Yan Jinyao, Zhang Hailong, Su Yumin. Recent research on the click-through rate and conversion rate prediction in computational advertising[J]. Journal of Communication University of China(Science and Technology), 2021, 28(2):54-60.
|
[2] |
Rendle S. Factorization machines[C]. Sydney: Proceedings of the Tenth IEEE International Conference on Data Mining, 2010.
|
[3] |
Guo H, Tang R, Ye Y, et al. DeepFM: A factorization-machine based neural network for CTR prediction[C]. Melbourne: Proceedings of the Twenty-sixth International Joint Conference on Artificial Intelligence, 2017.
|
[4] |
Lian J, Zhou X, Zhang F, et al. xDeepFM: Combining explicit and implicit feature interactions for recommender systems[C]. London: Proceedings of the Twenty-fourth ACM SIGKDD International Conference, 2018.
|
[5] |
郑萌. 基于改进注意力机制模型的智能英语翻译方法研究[J]. 电子科技, 2020, 33(11):84-87.
|
|
Zheng Meng. Research on intelligent English translation method based on improved attention mechanism model[J]. Electronic Science and Technology, 2020, 33(11):84-87.
|
[6] |
Zhou G, Zhu X, Song C, et al. Deep interest network for click-through rate prediction[C]. London: Proceedings of the Twenty-fourth ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2018.
|
[7] |
Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]. Vancouver: Advances in Neural Information Processing Systems, 2017.
|
[8] |
Zhou G, Mou N, Fan Y, et al. Deep interest evolution network for click-through rate prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1):5941-5948.
doi: 10.1609/aaai.v33i01.33015941
|
[9] |
包晓安, 陈昀, 张瑞林, 等. 基于用户历史序列的点击率预估[J]. 软件导刊, 2021, 20(5):25-28.
|
|
Bao Xiaoan, Chen Yun, Zhang Ruilin, et al. Click-through rate prediction based on user historical sequence[J]. Software Guide, 2021, 20(5):25-28.
|
[10] |
曾彦程. 基于注意力机制的推荐算法研究[D]. 成都: 电子科技大学, 2021.
|
|
Zeng Yancheng. Research on recommendation algorithm based on attention mechanism[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
|
[11] |
Sun F, Liu J, Wu J, et al. BERT4Rec: Sequential recommendation with bidirectional encoder representations from transformer[C]. Beijing: Proceedings of the Twenty-eighth ACM International Conference on Information and Knowledge Management, 2019.
|
[12] |
王学斌. 一种基于深度偏好网络的点击率预估模型的设计与评价[D]. 北京: 北京大学, 2019.
|
|
Wang Xuebin. Design and evaluation of a click-through rate prediction model based on deep preference network[D]. Beijing: Peking University, 2019.
|
[13] |
Xiao Z, Yang L, Jiang W, et al. Deep multi-interest network for click-through rate prediction[C]. New York: Proceedings of the Twenty-ninth ACM International Conference on Information and Knowledge Management, 2020.
|
[14] |
周菲, 徐洪珍. 基于改进Transformer的广告点击率预估模型[J]. 计算机应用研究, 2021, 38(8):2386-2389.
|
|
Zhou Fei, Xu Hongzhen. Improved transformer based model for click-through rate prediction[J]. Application Research of Computers, 2021, 38(8):2386-2389.
|
[15] |
李雪婷, 杨抒, 赛亚热·迪力夏提, 等. 融合内容与协同过滤的混合推荐算法应用研究[J]. 计算机技术与发展, 2021, 31(10):24-29.
|
|
Li Xueting, Yang Shu, Saiyare Dilixiati, et al. Research on application of hybrid recommendation algorithm of content fusion and collaborative filtering[J]. Computer Technology and Development, 2021, 31(10):24-29.
|
[16] |
Ma X, Zhao L, Huang G, et al. Entire space multi-task model: An effective approach for estimating post-click conversion rate[C]. Ann Arbor: Proceedings of the Forty-first International ACM SIGIR Conference, 2018.
|
[17] |
Ni Y, Ou D, Liu S, et al. Perceive your users in depth: Learning universal user representations from multiple ecommerce tasks[C]. London: Proceedings of the Twenty-fourth ACM SIGKDD International Conference, 2018.
|
[18] |
黄剑波, 陈方灵, 丁友东, 等. 基于情感分析的个性化电影推荐[J]. 计算机技术与发展, 2020, 30(9):132-136.
|
|
Huang Jianbo, Chen Fangling, Ding Youdong, et al. Personalized movie recommendation based on sentiment Analysis[J]. Computer Technology and Development, 2020, 30(9):132-136.
|