电子科技 ›› 2023, Vol. 36 ›› Issue (4): 84-89.doi: 10.16180/j.cnki.issn1007-7820.2023.04.012

• • 上一篇    下一篇

融合用户行为序列预测的混合推荐算法

孙红,鹿梅珂   

  1. 上海理工大学 光电信息与计算机工程学院,上海 200093
  • 收稿日期:2021-11-08 出版日期:2023-04-15 发布日期:2023-04-21
  • 作者简介:孙红(1964-),女,博士,副教授。研究方向:大数据与云计算、控制科学与工程、模式识别与智能系统。|鹿梅珂(1996-),女,硕士研究生。研究方向:推荐系统、点击率预估、自然语言处理。
  • 基金资助:
    国家自然科学基金(61472256);国家自然科学基金(61170277);国家自然科学基金(61703277)

Hybrid Recommendation Algorithm Fused with User Behavior Sequence Prediction

SUN Hong,LU Meike   

  1. School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China
  • Received:2021-11-08 Online:2023-04-15 Published:2023-04-21
  • Supported by:
    National Natural Science Foundation of China(61472256);National Natural Science Foundation of China(61170277);National Natural Science Foundation of China(61703277)

摘要:

对于用户行为序列中隐藏用户兴趣的捕捉是近年来推荐算法研究的热门方向。传统的序列预测模型使用用户最后一次点击的商品为目标,建立用户行为和目标商品间的关联,并没有充分挖掘用户序列间的先后关系。文中在传统的DIN模型的基础上进行了改进,采用一段时间内的连续行为作为目标向量,使用transformer结构完成序列到序列的预测任务,进一步提取和利用了用户行为序列中的用户深度兴趣,并将其作为辅助特征结合DIN进行推荐。在亚马逊图书数据集和电子数据集上的实验结果表明,文中提出的基于DIN混合推荐模型比原DIN模型的AUC指标分别提升了约0.7%和1.9%。由此可知,基于用户行为序列预测的混合推荐可以在多特征推荐系统中起到一定的辅助作用。此外,文中还对用户序列长度对模型结果造成的影响进行了探究。

关键词: 推荐系统, 点击率预估, 计算广告, CTR预估, 混合推荐, 用户序列, 用户偏好, 注意力机制

Abstract:

The capture of user interest hidden in the user behavior sequence is a hot research direction of recommendation algorithms in recent years. The traditional sequence prediction model uses the last product clicked by the user as the target, and establishes the association between user behavior and the target product, but does not fully dig out the sequence relationship between user sequences. This study improves on the traditional DIN model, uses continuous behavior over a period of time as the target vector, uses the transformer structure to complete the sequence-to-sequence prediction task, and further extracts and utilizes the user's deep interest in the user behavior sequence, and it is recommended in conjunction with DIN as an auxiliary feature. The experimental results on the Amazon book and the electronic data sets show that the DIN-based hybrid recommendation model proposed in this study increases the AUC index of the original DIN model by about 0.7% and 1.9%, respectively. It can be seen that the hybrid recommendation based on user behavior sequence prediction can play a certain auxiliary role in the multi-feature recommendation system. In addition, the influence of user sequence length on the model results is also explored.

Key words: recommendation system, click-through rate estimation, advertising calculation, CTR estimation, mixed recommendation, user sequence, user preference, attention mechanism

中图分类号: 

  • TP391