[1] |
姜银方, 郭永强, 雷玉兰, 等. 匹配层厚度对弛豫单晶换能器性能的影响[J]. 电子科技, 2018, 31(9):25-28.
|
|
Jiang Yinfang, Guo Yongqiang, Lei Yulan, et al. Effect ofmatching layer thickness on performance of relaxed single crystal transducer[J]. Electronic Science and Technology, 2018, 31(9):25-28.
|
[2] |
陈政宏, 蒋沅臻, 侯建强. 一种基于电磁超材料的大规模天线阵列天线罩解耦技术[J]. 电子科技, 2022, 35(1):6-11.
|
|
Chen Zhenghong, Jiang Yuanzhen, Hou Jianqiang. A large-scale antenna array radome decoupling technology based on electromagnetic metamaterials[J]. Electronic Science and Technology, 2022, 35(1):6-11.
|
[3] |
杨帅, 李昌清, 赖虹君, 等. 流固混合声子晶体中负折射与导波特性研究[J]. 哈尔滨工程大学学报, 2022, 43(9):1370-1375.
|
|
Yang Shuai, Li Changqing, Lai Hongjun, et al. Negative refraction and guided waves in fluid-solid phononic crystals[J]. Journal of Harbin Engineering University, 2022, 43(9):1370-1375.
|
[4] |
陈宗旺, 姚源卫, 吴福根, 等. 二维三组元声子晶体Schoch效应及其调控[J]. 中国科学:物理学,力学,天文学, 2017, 47(6):65-73.
|
|
Chen Zongwang, Yao Yuanwei, Wu Fugen, et al. The Schoch effect mechanism analysis and its regulation of two dimensional three components phononic crystal[J]. Scientia Sinica(Physica,Mechanica & Astronomica), 2017, 47(6):65-73.
|
[5] |
高南沙, 侯宏. 三维局域共振型声子晶体低频带隙特性研究[J]. 材料导报, 2018, 32(2):322-326.
|
|
Gao Nansha, Hou Hong. Low frequency bandgap characteristics of three-dimensional local resonance phononic crystal[J]. Materials Reports, 2018, 32(2):322-326.
|
[6] |
梁辰, 李亦军. 基于人工梯度结构的声传输特性分析[J]. 科学技术与工程, 2019, 19(33):43-48.
|
|
Liang Chen, Li Yijun. Analysis of acoustic transmission characteristics based on artificial gradient structure[J]. Science Technology and Engineering, 2019, 19(33):43-48.
|
[7] |
左曙光, 韦锡晋, 倪天心, 等. 材料粘弹性对于一维局域共振声子晶体带隙的影响[J]. 功能材料, 2016, 47(10):10162-10167.
doi: 10.3969/j.issn.1001-9731.2016.10.030
|
|
Zuo Shuguang, Wei Xijin, Ni Tianxin, et al. The effects of viscoelastic material on the band gap of one-dimensional locally resonant phononic crystal[J]. Journal of Functional Materials, 2016, 47(10):10162-10167.
doi: 10.3969/j.issn.1001-9731.2016.10.030
|
[8] |
刘聪, 徐晓东, 刘晓峻. 全向入射条件下一维固流周期结构中低频声裂隙变化特性研究[J]. 物理学报, 2013, 62(20):1-8.
|
|
Liu Cong, Xu Xiaodong, Liu Xiaojun. Acoustic band fracture variation of low frequency transmission zone in one-dimensional solid-fluid periodic structures under omnidirectional incidence[J]. Acta Physica Sinica, 2013, 62(20):1-8.
|
[9] |
Zhang S, Zhang Y, Guo Y J, et al. Realization of subwavelength asymmetric acoustic transmission based on low-frequency forbidden transmission[J]. Physical Review Applied, 2016, 5(3):34006-34018.
doi: 10.1103/PhysRevApplied.5.034006
|
[10] |
Miniaci M, Gliozzi A S, Morvan B, et al. Proof of concept for an ultrasensitive technique to detect and localize sources of elastic nonlinearity using phononic crystals[J]. Physical Review Letters, 2017, 21(118):214301-214313.
|
[11] |
Quotane I, El Boudouti E H, Djafari-Rouhani B. Trapped-mode-induced fano resonance and acoustical transparency in a one-dimensional solid-fluid phononic crystal[J]. Physical Review, 2018, 97(2):1-17.
doi: 10.1103/PhysRev.97.1
|
[12] |
Kang H S, Lee K I. Self-collimation of ultrasonic waves in a two-dimensional prism-shaped phononic crystal[J]. Journal of the Korean Physical Society, 2020, 77(6):510-514.
doi: 10.3938/jkps.77.510
|
[13] |
Deng T, Zhang S Z, Gao Y W. A magnetic-dependent vibration energy harvester based on the tunable point defect in 2D magneto-elastic phononic crystals[J]. Crystals, 2019, 9(5):261-273.
doi: 10.3390/cryst9050261
|
[14] |
林基艳, 林书玉, 王升, 等. 点缺陷正方晶格声子晶体的大尺寸压电陶瓷复合换能器[J]. 中国科学:物理学,力学,天文学, 2021, 51(9):100-110.
|
|
Lin Jiyan, Lin Shuyu, Wang Sheng, et al. Large-dimension piezoelectric ceramic composite transducer with point-defect,square-lattice phononic crystal[J]. Scientia Sinica(Physica,Mechanica & Astronomica), 2021, 51(9):100-110.
|
[15] |
钟兰花, 陈静元, 刘家盈, 等. 基于线缺陷声子晶体的声波导设计[J]. 物理实验, 2019, 39(8):9-13.
|
|
Zhong Lanhua, Chen Jingyuan, Liu Jiaying, et al. Acoustic wave guide based on phononic crystals with linear defect[J]. Physics Experimentation, 2019, 39(8):9-13.
|
[16] |
Zhang S, Zhang Y, Gao X W, et al. Superwide-angle acoustic propagations above the critical angles of the snell law in liquid-solid superlattice[J]. Chinese Physics, 2014, 23(12):1-7.
|
[17] |
Zhang S, Xu B Q, Cao W W, et al. Controlling the angle range in acoustic low-frequency forbidden transmitssion in solid-fluid superlattice[J]. Journal of Applied Physics, 2018, 123(11):1-7.
|
[18] |
Zhang S, Zhang Y, Lu W, et al. Low-frequency forbiddenbandgap engineering via a cascade of multiple 1D superlattices[J]. Journal of Applied Physics, 2018, 124(15):1-8.
|