›› 2010, Vol. 23 ›› Issue (12): 70-72.

• 论文 • 上一篇    下一篇

基于类别比例因子和类内均分度的χ2统计改进

张瑜,张德贤   

  1. (河南工业大学 信息科学与工程学院,河南 郑州〓450001)
  • 出版日期:2010-12-15 发布日期:2010-12-30
  • 作者简介:张瑜(1982-),男,硕士研究生。研究方向:机器学习;张德贤(1961-),男,教授,博士生导师。研究方向:人工智能、机器学习。
  • 基金资助:

    河南省创新性科技团队建设基金资助项目(094200510009)

 Improvement χ2 of Statistics Based on the Category Scale Factor and Average Distribution Inner Category

 ZHANG Yu, ZHANG De-Xian   

  1. (College of Information Science and Technology,Henan University of Technology,Zhengzhou  450001,China)
  • Online:2010-12-15 Published:2010-12-30

摘要:

针对χ2统计特征选择方法的两大局限:对低文档频的特征选择不合理,以及过分强调那些在指定类低频出现,而在其他类中高频出现的特征项在该类中的权重。提出基于类别比例因子与类内均分度的χ2统计特征选择的改进方法。实验结果表明,改进方法的分类效果优于传统方法。

关键词: 特征选择, &chi, 2统计, 类别比例因子, 类内均分度

Abstract:

The χ2 statistical method has two defects.One has reduced the weight of the low-frequency terms and the other has increased the weight of the characteristics in the designated class.This paper proposes an improved χ2 statistical approach based on the category scale factor and average distribution inner category.A contrastive experiment is carried out and the results show that improved χ2 statistics is superior to traditional  statistical in feature selection.

Key words: feature selection;χ2 statistics;category scale factor;average distribution inner category

中图分类号: 

  • TP39