Electronic Science and Technology ›› 2019, Vol. 32 ›› Issue (11): 18-22.doi: 10.16180/j.cnki.issn1007-7820.2019.11.004
Previous Articles Next Articles
BEI Chenyuan1,YU Haibin1,PAN Mian1,JIANG Jie1,LÜ Bingyun2
Received:
2018-11-01
Online:
2019-11-15
Published:
2019-11-15
Supported by:
CLC Number:
BEI Chenyuan,YU Haibin,PAN Mian,JIANG Jie,LÜ Bingyun. Gland Cell Image Segmentation Algorithm Based on Improved U-Net Network[J].Electronic Science and Technology, 2019, 32(11): 18-22.
Table 2
Warwick-Qu dataset testing results"
F1score | Object Dice | Object Hausdorff | Sum | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | Rank | B | Rank | A | Rank | B | Rank | A | Rank | B | Rank | ||
Proposed DeepLab-v3 FCN-8 SegNet U-Net Freidburg1 CUMedVision1 Freidburg2 CVML ExB3 ExB2 ExB1 LIB vision4GlaS | 0.897 0.858 0.783 0.862 0.788 0.834 0.868 0.870 0.652 0.896 0.892 0.891 0.777 0.635 | 1 8 11 7 10 9 6 5 13 2 3 4 12 14 | 0.832 0.753 0.692 0.764 0.697 0.605 0.769 0.695 0.541 0.719 0.686 0.703 0.306 0.527 | 1 4 9 3 7 11 2 8 12 5 10 6 14 13 | 0.885 0.864 0.795 0.859 0.781 0.875 0.867 0.876 0.644 0.886 0.884 0.882 0.781 0.737 | 2 8 10 9 11 6 7 5 14 1 3 4 12 13 | 0.825 0.807 0.767 0.804 0.781 0.783 0.800 0.786 0.654 0.765 0.754 0.786 0.617 0.610 | 1 2 9 3 8 7 4 5 12 10 11 5 13 14 | 54.20 62.62 105.04 65.72 102.47 57.19 74.60 57.09 155.43 57.36 54.79 57.41 112.71 107.49 | 1 7 11 8 10 4 9 3 14 5 2 6 13 12 | 119.93 118.51 147.28 124.97 143.75 146.61 153.65 148.47 176.24 159.87 187.44 145.58 190.45 210.10 | 2 1 7 3 4 6 9 8 11 10 12 5 13 14 | 8 30 57 33 50 43 37 34 76 33 41 30 77 80 |
Table 3
UCSB breast dataset testing results"
F1score | Object Dice | Object Hausdorff | Sum | |||||||
---|---|---|---|---|---|---|---|---|---|---|
score | rank | score | rank | score | rank | |||||
Proposed | 0.725 | 1 | 0.775 | 1 | 240.14 | 1 | 3 | |||
Deeplab-v3 | 0.648 | 2 | 0.745 | 2 | 281.45 | 3 | 7 | |||
SegNet | 0.622 | 3 | 0.739 | 3 | 247.84 | 2 | 7 | |||
U-Net | 0.600 | 4 | 0.654 | 4 | 354.09 | 4 | 12 | |||
FCN-8 | 0.558 | 5 | 0.640 | 5 | 436.43 | 5 | 15 |
[1] | Winawer S J, Fletcher R H, Miller L , et al. Colorectal cancer screening: clinical guidelines and rationale[J]. Gastroenterology, 1997,113(4):594-642. |
[2] | 陈爱斌, 江霞 . 细胞分割算法研究方法综述[J].电子世界 2011(15):76-79. |
Chen Aibin, Jiang Xia . Review of research methods for cell segmentation algorithms[J].Electronic World, 2011(15):76-79. | |
[3] | Elston C W, Ellis I O . Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up[J]. Histopathology, 2010,19(5):403-410. |
[4] | Gleason D F . Histologic grading of prostate cancer:A perspective[J]. Human Pathology, 1992,23(3):273-279. |
[5] | Fleming M, Ravula S, Tatishchev S F , et al. Colorectal carcinoma: Pathologic aspects[J]. Journal of Gastrointestinal Oncology, 2012,3(3):153-153. |
[6] | 章毓晋 . 图像处理和分析基础[M]. 北京: 高等教育出版社, 2002. |
Zhang Yujin. The basis of image processing and analysis [M]. Beijing: Higher Education Press, 2002. | |
[7] | Gurcan M N, Boucheron L E, Can A , et al. Histopathological image analysis: a review[J].IEEE Reviews in Biomedical Engineering 2009(2):147-147. |
[8] | Altunbay D, Cigir C, Sokmensuer C , et al. Color graphs for automated cancer diagnosis and grading[J]. IEEE Transactions on Biomedical Engineering, 2010,57(3):665-665. |
[9] |
Gunduz Demir C, Kandemir M, Tosun A B , et al. Automatic segmentation of colon glands using object-graphs[J]. Medical Image Analysis, 2010,14(1):1-12.
doi: 10.1016/j.media.2009.09.001 |
[10] |
Fu H, Qiu G, Shu J , et al. A novel polar space random field model for the detection of glandular structures[J]. IEEE Transactions on Medical Imaging, 2014,33(3):764-764.
doi: 10.1109/TMI.2013.2296572 |
[11] | Khasawneh S, Al Wahadni A, Lloyd C H . A stochastic polygons model for glandular structures in colon histology images[J]. IEEE Transactions on Medical Imaging, 2015,34(11):2366-2378. |
[12] | Ronneberger O, Fischer P, Brox T. U-Net:convolutional networks for biomedical image segmentation[M]. Berlin: Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015,Springer International Publishing, 2015. |
[13] | Chen H, Qi X, Yu L , et al. DCAN:Deep contour-aware networks for object instance segmentation from histology images[J]. Medical Image Analysis, 2017,36(9):135-146. |
[14] | Xu Y, Li Y, Liu M, et al. Gland instance segmentation by deep multichannel side supervision [C].Athens: International Conference on Medical Image Computing and Computer-Assisted Intervention,Springer,Cham, 2016. |
[15] | Xu Y, Li Y, Wang Y , et al. Gland instance segmentation using deep multichannel neural networks[J]. IEEE Transactions on Biomedical Engineering, 2017,64(12):2901-2912. |
[16] | Raza S E A, Cheung L, Epstein D, et al. MIMONet:gland segmentation using multi-input-multi-output convolutional neural network [C].Edinburgh:Annual Conference on Medical Image Understanding and Analysis,Springer,Cham, 2017. |
[17] | Chen L C, Papandreou G, Kokkinos I , et al. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018,40(4):834-848. |
[18] | Drelie Gelasca E, Obara B, Fedorov D , et al. A biosegmentation benchmark for evaluation of bioimage analysis methods[J]. BMC Bioinformatics, 2009,10(1):368-368. |
[19] | Sirinukunwattana K, Pluim J P, Chen H , et al. Gland segmentation in colon histology images: The glas challenge contest[J]. Medical Image Analysis, 2017,35(8):489-502. |
[20] | Lecun Y, Bengio Y, Hinton G . Deep learning[J]. Nature, 2015,521(7553):436-436. |
[21] | Yu F, Koltun V, Funkhouser T A. Dilated residual networks [C].Hawaii:Conference on Computer Vision and Pattern Recognition, 2017. |
[22] | Wang P, Chen P, Yuan Y , et al. Understanding convolution for semantic segmentation[C].California:IEEE Winter Conference on Applications of Computer Vision ( WACV), 2018. |
[23] | Hu J, Shen L, Sun G . Squeeze-and-excitation networks[J]. IEEE Transaction on Network, 2017,28(4):523-539. |
[24] | Liu Z, Li X, Luo P, et al. Semantic image segmentation via deep parsing network [C].Santiago:Proceedings of the IEEE International Conference on Computer Vision, 2015. |
[25] | Oktay O, Schlemper J, Folgoc L L , et al. Attention U-Net: learning where to look for the pancreas[J]. IEEE Transaction on Network, 2018,29(2):117-129. |
[26] | Abadi , Martín , Barham P, et al.TensorFlow:A system for large-scale machine learning[J]. IEEE Transaction on Network, 2016,27(9):1024-1037. |
[27] | 何菁, 陈胜 . 一种全新的两步自动化医学图像分割方案[J]. 电子科技, 2016,29(7):85-87. |
He Jing, Chen Sheng . A new two-step automated medical image segmentation scheme[J]. Electronic Science and Technology, 2016,29(7):85-87. |
[1] | ZHAO Yunfei, XUE Cunjin. A Remote Sensing Image Water Extraction Method by Combining Atrous Convolution and Pooling Models [J]. Electronic Science and Technology, 2025, 38(3): 40-46. |
[2] | CHEN Yuyang, LI Feng. Integration of CNN and Transformer for Retinal OCT Image Fluid Segmentation Method [J]. Electronic Science and Technology, 2025, 38(3): 47-59. |
[3] | SUN Jiaqian, ZHU Jinrong, ZHANG Xiaobao, ZHANG Yunkai, GONG Weijuan. Research on Iris Segmentation Algorithm Based on Ensemble Learning [J]. Electronic Science and Technology, 2025, 38(3): 88-94. |
[4] | ZHENG Fangliang, WANG Yannian, LIAN Jihong, RUAN Pei. Face Image Super-Resolution Reconstruction Based on Conditional Priori Swin Transformer [J]. Electronic Science and Technology, 2025, 38(2): 35-41. |
[5] | PAN Tianyi, SONG Yan. Nonlinear Representation Latent Factor Decomposition Model Based on Trust Relationship [J]. Electronic Science and Technology, 2025, 38(2): 53-61. |
[6] | MA Zhuang, GAN Kaiyu, YIN Zhong. Emotion Recognition Based on Multimodal Fusion of the EEG and Peripheral Physiological Signals [J]. Electronic Science and Technology, 2025, 38(2): 62-69. |
[7] | LAI Ying, JU Zhiyong, YE Yuxin. A Vehicle Detection Algorithm Based on Improved YOLOv4 [J]. Electronic Science and Technology, 2025, 38(1): 81-87. |
[8] | LI Yunpeng, XI Zhihong. Dynamic Face Recognition System Design Based on RetinaFace and FaceNet [J]. Electronic Science and Technology, 2024, 37(12): 79-86. |
[9] | MO Zhuorui, HUANG Qianghao, ZHANG Lin, CAO Yuqi, GE Weiting, YU Minghui. Grading and Diagnostic Method for Colorectal Cancer Immunohistochemical Images [J]. Electronic Science and Technology, 2024, 37(12): 24-31. |
[10] | CUI Jingnan, HUANG Chunyan, LI Yanling. Improvement of YOLOv5s Algorithm for Steel Surface Defect Detection [J]. Electronic Science and Technology, 2024, 37(12): 48-55. |
[11] | GAN Kaiyu, YIN Zhong. Emotion Recognition Method Based on EEG and Instantaneous Emotion Intensity Label [J]. Electronic Science and Technology, 2024, 37(11): 78-84. |
[12] | XIA Qiangqiang, LI Feifei. Deep Learning with Noisy Labels Based on Co-Teaching [J]. Electronic Science and Technology, 2024, 37(11): 1-6. |
[13] | CHENG Jinke, LI Gaolei. Privacy-Preserving Data Style Transfer Method for Artificial Intelligence of Things [J]. Electronic Science and Technology, 2024, 37(10): 1-5. |
[14] | JU Ping, SONG Yan, ZHANG Yingjie, XU Yifu, SHAO Hang. Research on Agricultural Crop Diseases and Pests Classification Based on Masked Autoencoding [J]. Electronic Science and Technology, 2024, 37(10): 23-29. |
[15] | FENG Ting, YING Jie, YANG Haima, LI Fang. Detection of Cervical Lesions Based on Multi-Scale Features and Attention Mechanism [J]. Electronic Science and Technology, 2024, 37(10): 30-39. |
|