Electronic Science and Technology ›› 2023, Vol. 36 ›› Issue (12): 55-63.doi: 10.16180/j.cnki.issn1007-7820.2023.12.008
Previous Articles Next Articles
CHEN Xing,LI Danyang,HE Qing
Received:2022-07-25
Online:2023-12-15
Published:2023-12-05
Supported by:CLC Number:
CHEN Xing,LI Danyang,HE Qing. Adaptive Multi-Objective Genetic Algorithm with Ensemble Pruning for Facial Expression Recognition[J].Electronic Science and Technology, 2023, 36(12): 55-63.
"
| 算法1 自适应交叉策略选择与更新 |
| 输入:策略优先级Sm,m∈{1,2,3,4},父代总群。 输出:策略优先级Sm,m∈{1,2,3,4},两个子代。 1.用式(5)计算每个策略被选择的策略SPm 2.轮盘赌选择一个策略SPm 3.if SPm==1 4. 使用单点交叉策略生成两个子代 5. if有一个子代支配一个父代 6. s1=s1+1 7.else if SPm==2 8. 使用双点交叉策略生成两个子代 9. if有一个子代支配一个父代 10. s2=s2+1 11.else if SPm==3 12. 使用均匀交叉策略生成两个子代 13. if有一个子代支配一个父代 14. s3=s3+1 15.else if SPm==4 16. 使用洗牌交叉策略生成两个子代 17. if有一个子代支配一个父代 18. s4=s4+1 |
"
| 算法2 AMGAEP |
| 输入:训练集T={(xi,xj) 输出:集成剪枝错误率err,最优的分类器子集cls={ci(x)} 1.使用训练集训练一组基分类器C= 2.初始化:种群大小popsize,交叉策略Sm=1,m∈{1,2,3,4},当前迭代次数t,最大迭代次数maxIter,δ和c等 3.通过式(1)在验证集V中获取分类器预测值 4.通过式(2)和式(3)计算种群的适应度值 5.非支配排序 6.计算拥塞距离 7.While t<maxIter 8. 锦标赛选择子代 9. 根据式(7)确定交叉子代的数量 10. 使用算法1进行交叉操作生成个子代 11. 对种群进行突变 12. 使用式(4)更新突变概率 13. 父代和子代合并 14. 非支配排序 15. 计算拥塞距离 16. 精英策略选择 17. 更新帕累托前沿PF 18. end while 19. PF的所有染色体在测试集中测试最终集成剪枝的效果,选择具有最小错误率的染色体,并输出错误率err和分类器子集cls |
Table 2.
Details of each expression in the five data sets"
| 数据集 | FER2013 | JAFFE | CK+ | RaFD | KDEF |
|---|---|---|---|---|---|
| Anger | 4 953 | 30 | 135 | 201 | 70 |
| Disgust | 547 | 29 | 177 | 201 | 70 |
| Fear | 5 121 | 32 | 75 | 201 | 70 |
| Happy | 8 989 | 31 | 207 | 201 | 70 |
| Sadness | 6 077 | 31 | 84 | 201 | 70 |
| Surprise | 4 002 | 30 | 249 | 201 | 70 |
| Neutral | 6 198 | 30 | 593 | 201 | 70 |
| Total | 35 887 | 213 | 1 520 | 1 407 | 490 |
Table 3.
Comparison error of AMGAEP with eight ensemble pruning methods"
| 数据集 | FER2013 | JAFFE | CK+ | RaFD | KDEF |
|---|---|---|---|---|---|
| Baseline | 0.296 5(231) | 0.577 5(231) | 0.242 2(231) | 0.303 5(231) | 0.283 7(231) |
| UWA-based DHCEP[ | 0.267 8(53) | 0.488 3(134) | 0.230 3(142) | 0.253 7(5) | 0.242 9(113) |
| DREP[ | 0.2680(29) | 0.493 0(129) | 0.230 3(114) | 0.265 8(111) | 0.242 9(105) |
| ComEP[ | 0.267 8(26) | 0.488 3(134) | 0.230 3(142) | 0.265 8(129) | 0.248 6(56) |
| Kappa[ | 0.287 0(196) | 0.530 5(192) | 0.241 4(230) | 0.279 3(1) | 0.283 7(231) |
| QS[ | 0.290 6(206) | 0.5540(174) | 0.241 4(230) | 0.279 3(1) | 0.283 7(231) |
| RGSS&B-EP[ | 0.272 5(118) | 0.4930(137) | 0.230 9(143) | 0.270 0(92) | 0.246 9(103) |
| OO[ | 0.266 6(49) | 0.488 3(134) | 0.229 6(142) | 0.264 4(129) | 0.240 8(53) |
| SDAcc[ | 0.267 5(18) | 0.488 3(129) | 0.230 3(142) | 0.248 0(11) | 0.242 9(57) |
| AMGAEP | 0.266 0(30) | 0.477 1(38) | 0.225 0(43) | 0.266 5(58) | 0.236 3(42) |
| [1] |
Li D, Wen G, Li X, et al. Graph-based dynamic ensemble pruning for facial expression recognition[J]. Applied Intelligence, 2019, 49(9):3188-3206.
doi: 10.1007/s10489-019-01435-2 |
| [2] |
Saxena S, Tripathi S, Sudarshan T. An intelligent facial expression recognition system with emotion intensity classification[J]. Cognitive Systems Research, 2022, 74(4):39-52.
doi: 10.1016/j.cogsys.2022.04.001 |
| [3] |
Hakim A, Marsland S, Guesgen H W. Computational representation and analysis of emotion dynamics[J]. Multimedia Tools and Applications, 2022, 81(15):21111-21133.
doi: 10.1007/s11042-022-12490-2 |
| [4] |
Yca B, Sea C, Koa D, et al. Emotional context effect onrecognition of varying facial emotion expression intensities in depression[J]. Journal of Affective Disorders, 2022, 308(7):141-146.
doi: 10.1016/j.jad.2022.04.070 |
| [5] |
Li D, Wen G. MRMR-based ensemble pruning for facial expression recognition[J]. Multimedia Tools and Applications, 2018, 77(12):15251-15272.
doi: 10.1007/s11042-017-5105-z |
| [6] |
Li D, Wen G, Hou Z, et al. RTCRelief-F:An effective c-lustering and ordering-based ensemble pruning algorithm for facial expression recognition[J]. Knowledge and Information Systems, 2019, 59(1):219-250.
doi: 10.1007/s10115-018-1176-z |
| [7] | Xue Y, Zhu H, Liang J, et al. Adaptive crossover operator based multi-objective binary genetic algorithm for feature selection in classification[J]. Knowledge-Based Systems, 2021(3):107218-107226. |
| [8] |
Dong H, Li T, Ding R, et al. A novel hybrid genetic al-gorithm with granular information for feature selection and optimization[J]. Applied Soft Computing, 2018, 65(4):33-46.
doi: 10.1016/j.asoc.2017.12.048 |
| [9] | Zavaschi T, Koerich A L, Oliveira L. Facial expression recognition using ensemble of classifiers[C]. Prague: IEEE International Conference on Acoustics,Speech and Signal Processing, 2011:1489-1492. |
| [10] |
Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm:NSGAII[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.
doi: 10.1109/4235.996017 |
| [11] | 张翔, 史志才, 陈良. 基于SWA优化级联网络的表情识别方法[J]. 电子科技, 2020, 33(9):16-20. |
| Zhang Xiang, Shi Zhicai, Chen Liang. Expression recognition method based on cascade network optimized by SWA[J]. Electronic Science and Technology, 2020, 33(9):16-20. | |
| [12] | 邓源, 施一萍, 江悦莹, 等. 基于MobileNetV2与LBP特征融合的婴幼儿表情识别算法[J]. 电子科技, 2022, 35(8):47-52. |
| Deng Yuan, Shi Yiping, Jiang Yueying, et al. Infant expression recognition algorithm based on MobileNetV2 and LBP feature fusion[J]. Electronic Science and Technology, 2022, 35(8):47-52. | |
| [13] |
Wang M, Li X, Chen L. An enhance multimodal multi-objective optimization genetic algorithm with special crowding distance for pulmonary hypertension feature selection[J]. Computers in Biology and Medicine, 2022, 146(5):105536-105547.
doi: 10.1016/j.compbiomed.2022.105536 |
| [14] | 杨东勇, 卢瑾. 基于惩罚机制的自适应交叉粒子群算法[J]. 计算机科学, 2010, 37(4):249-254,284. |
| Yang Dongyong, Lu Jin. Self-adaptive crossover particle swarm optimization based on penalty mechanism[J]. Computer Science, 2010, 37(4):249-254,284. | |
| [15] |
Goodfellow I J, Erhan D, Carrier P L, et al. Challenges in representation learning:A report on three machine learning contests[J]. Neural Networks:The Official Journal of the International Neural Network Society, 2015, 64(4):59-63.
doi: 10.1016/j.neunet.2014.09.005 |
| [16] |
Partalas I, Tsoumakas G, Vlahavas I. An ensemble uncertainty aware measure for directed hill climbing ensemble pruning[J]. Machine Learning, 2010, 81(3):257-282.
doi: 10.1007/s10994-010-5172-0 |
| [17] | Li N, Yu Y, Zhou Z. Diversity regularized ensemble pruning[C]. Berlin:Machine Learning and Knowledge Discovery in Databases, 2012:330-345. |
| [18] |
Wang Z, Zhao S, Li Z, et al. Ensemble selection with joint spectral clustering and structural sparsity[J]. Pattern Recognition, 2021, 119(11):108061-108074.
doi: 10.1016/j.patcog.2021.108061 |
| [19] |
Dai Q. A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot[J]. Neurocomputing, 2013, 122(122):258-265.
doi: 10.1016/j.neucom.2013.06.026 |
| [20] |
Dai Q, Ye R, Liu Z. Considering diversity and accuracy simultaneously for ensemble pruning[J]. Applied Soft Computing, 2017, 58(9):75-91.
doi: 10.1016/j.asoc.2017.04.058 |
| [21] | Tan M, Le Q V. EfficientNet:Rethinking model scaling for convolutional neural networks[C]. Long Beach: Proceedings of the Thirty-sixth International Conference on Machine Learning, 2019:6105-6114. |
| [22] | Liu Z, Mao H, Wu C, et al. A ConvNet for the 2020s[EB/OL].(2022-01-01) [2022-08-27] https://arxiv.org/abs/2201.03545. |
| [1] | WANG Ziyi, CHEN Shiping. Self-Supervised Network Intrusion Detection Model Based on Graph Contrastive Learning [J]. Electronic Science and Technology, 2025, 38(3): 22-31. |
| [2] | LI Jiaying, YANG Zemin, SONG Zhedai, ZHU Jinrong. Research on Elastic Scaling Method of Kubernetes Container Cloud [J]. Electronic Science and Technology, 2025, 38(3): 32-39. |
| [3] | ZHAO Yunfei, XUE Cunjin. A Remote Sensing Image Water Extraction Method by Combining Atrous Convolution and Pooling Models [J]. Electronic Science and Technology, 2025, 38(3): 40-46. |
| [4] | CHEN Yuyang, LI Feng. Integration of CNN and Transformer for Retinal OCT Image Fluid Segmentation Method [J]. Electronic Science and Technology, 2025, 38(3): 47-59. |
| [5] | DONG Jiaying, SONG Yan, LI Ming. A Nonlinear Representation-Based Probabilistic Latent Factorization Tensor Model [J]. Electronic Science and Technology, 2025, 38(3): 7-15. |
| [6] | SUN Jiaqian, ZHU Jinrong, ZHANG Xiaobao, ZHANG Yunkai, GONG Weijuan. Research on Iris Segmentation Algorithm Based on Ensemble Learning [J]. Electronic Science and Technology, 2025, 38(3): 88-94. |
| [7] | ZHENG Fangliang, WANG Yannian, LIAN Jihong, RUAN Pei. Face Image Super-Resolution Reconstruction Based on Conditional Priori Swin Transformer [J]. Electronic Science and Technology, 2025, 38(2): 35-41. |
| [8] | PAN Tianyi, SONG Yan. Nonlinear Representation Latent Factor Decomposition Model Based on Trust Relationship [J]. Electronic Science and Technology, 2025, 38(2): 53-61. |
| [9] | MA Zhuang, GAN Kaiyu, YIN Zhong. Emotion Recognition Based on Multimodal Fusion of the EEG and Peripheral Physiological Signals [J]. Electronic Science and Technology, 2025, 38(2): 62-69. |
| [10] | SHI Zhicai. Research on the Security and Privacy Preserving Method of RFID Systems [J]. Electronic Science and Technology, 2025, 38(2): 78-83. |
| [11] | YAN Pingping, LI Hui, CHEN Yinchao, YANG Zhaoxu, GUO Xiaodan. An Airborne Unified Network Protocol Conformance Testing Technique Based on Time Trigger [J]. Electronic Science and Technology, 2025, 38(1): 14-22. |
| [12] | WEI Yu, WAN Weibing. Improved Multi-Objective Salp Swarm Algorithm for Solving Flexible Job Shop Scheduling Problem [J]. Electronic Science and Technology, 2025, 38(1): 6-13. |
| [13] | ZHU Yangshuo, LÜ Haiyu, LI Yichen, ZHANG Fengdeng. Fault-Tolerant Real-Time Scheduling Algorithm in Multi-Core Processor [J]. Electronic Science and Technology, 2025, 38(1): 73-80. |
| [14] | LAI Ying, JU Zhiyong, YE Yuxin. A Vehicle Detection Algorithm Based on Improved YOLOv4 [J]. Electronic Science and Technology, 2025, 38(1): 81-87. |
| [15] | LI Yunpeng, XI Zhihong. Dynamic Face Recognition System Design Based on RetinaFace and FaceNet [J]. Electronic Science and Technology, 2024, 37(12): 79-86. |
|
||