Electronic Science and Technology ›› 2024, Vol. 37 ›› Issue (11): 70-77.doi: 10.16180/j.cnki.issn1007-7820.2024.11.010
Previous Articles Next Articles
WANG Zexue, LI Yusong, LONG Haoqi, MING Yuzhou
Received:
2022-03-20
Online:
2024-11-15
Published:
2024-11-21
Supported by:
CLC Number:
WANG Zexue, LI Yusong, LONG Haoqi, MING Yuzhou. Research on Parameter Optimization of Cold Crucible Power Supply Based on Electromagnetic Simulation[J].Electronic Science and Technology, 2024, 37(11): 70-77.
Figure 3.
Comparison between simulation and actual scene (a)φ500 mm cold crucible research device (b)φ500 mm cold crucible glass cold shell (c)Comparison between measured temperature and simulated temperature of a cold crucible with a diameter of φ500 mm (d)Simulation cloud map of temperature field in a φ500 mm diameter cold crucible"
Table 2.
Parameter of high frequency power supply and coil simulation experiment"
实验 序号 | 固定条件 | 仿真实验变量 |
---|---|---|
1~5 | 频率600 kHz,线圈高度50 mm, 匝数1匝,线圈直径140 mm | 电流强度为300 A、400 A、 500 A、600 A、700 A |
6~9 | 电流强度500 A,线圈高度50 mm, 匝数1匝,线圈直径140 mm | 频率为400 kHz、500 kHz、 600 kHz、700 kHz、800 kHz |
10~13 | 电流强度500 A,频率600 kHz, 匝数1匝,线圈直径140 mm | 线圈高度为10 mm、30 mm、 50 mm、70 mm、90mm |
14~17 | 电流强度500 A,频率600 kHz, 线圈高度50mm,线圈间距20 mm, 线圈直径140 mm | 线圈匝数为1匝、2匝、3匝、 4匝、5匝 |
18~21 | 电流强度500 A,频率600 kHz, 匝数1匝,线圈高度50 mm | 线圈直径为130 mm、135 mm、 140 mm、145 mm、150 mm |
22~25 | 电流强度500 A,频率600 kHz, 匝数3匝,线圈直径140 mm, 线圈高度50 mm | 线圈间距为15 mm、20 mm、 25 mm、30 mm、35 mm |
Table 4.
Simulation evaluation results"
实验 序号 | 评价指标 | 评价 结果 | |||
---|---|---|---|---|---|
涡流 损耗/W | 能量利用 率/% | 磁感应强 度/mT | 磁场分布均 匀性/mT | ||
1 | 294.13 | 24.99 | 2.44 | 2.50 | 0.18 |
2 | 522.89 | 24.99 | 3.25 | 3.33 | 0.18 |
3 | 817.02 | 24.99 | 4.06 | 4.16 | 0.67 |
4 | 1176.5 | 24.99 | 4.87 | 5.00 | 0.67 |
5 | 1601.4 | 24.99 | 5.69 | 5.83 | 0.17 |
6 | 367.15 | 16.06 | 4.09 | 4.26 | 0.15 |
7 | 570.13 | 20.71 | 4.07 | 4.20 | 0.16 |
8 | 1107.5 | 28.88 | 4.09 | 4.14 | 0.69 |
9 | 1441.1 | 32.41 | 4.07 | 4.12 | 0.60 |
10 | 650.51 | 24.96 | 3.41 | 8.50 | 0.17 |
11 | 802.23 | 26.09 | 3.98 | 5.20 | 0.68 |
12 | 713.36 | 22.52 | 3.67 | 5.38 | 0.17 |
13 | 481.54 | 17.47 | 2.84 | 6.02 | 0.13 |
14 | 787.11 | 29.05 | 3.98 | 3.10 | 0.21 |
15 | 731.46 | 33.37 | 3.83 | 1.39 | 0.27 |
16 | 660.93 | 37.50 | 3.62 | 1.91 | 0.26 |
17 | 583.23 | 41.22 | 3.37 | 1.32 | 0.29 |
18 | 941.07 | 19.65 | 4.38 | 5.98 | 0.66 |
19 | 875.36 | 22.64 | 4.21 | 4.85 | 0.67 |
20 | 763.92 | 26.88 | 3.92 | 3.57 | 0.19 |
21 | 714.41 | 28.39 | 3.78 | 3.20 | 0.21 |
22 | 767.25 | 30.81 | 3.93 | 2.65 | 0.23 |
23 | 690.09 | 35.74 | 3.71 | 1.91 | 0.26 |
24 | 644.62 | 37.72 | 3.57 | 1.47 | 0.28 |
25 | 596.84 | 39.42 | 3.42 | 1.32 | 0.28 |
[1] |
刘丽君, 张生栋. 放射性废物冷坩埚玻璃固化技术发展分析[J]. 原子能科学技术, 2015, 49(4):589-596.
doi: 10.7538/yzk.2015.49.04.0589 |
Liu Lijun, Zhang Shengdong. Analysis of technical development of vitrificating radioactive waste in cold crucible induction melter[J]. Atomic Energy Science and Technology, 2015, 49(4):589-596
doi: 10.7538/yzk.2015.49.04.0589 |
|
[2] |
王建晨, 陈靖. 我国高放废液中铯分离研究进展[J]. 核化学与放射化学, 2019, 41(1):27-39.
doi: 10.7538/hhx.2019.41.01.0027 |
Wang Jianchen, Chen Jing. Progress on partitioning of cesium from high level liquid waste in China[J]. Journal of Nuclear and Radiochemistry, 2019, 41(1):27-39.
doi: 10.7538/hhx.2019.41.01.0027 |
|
[3] | Vernaz É, Bruezière J. History of nuclear waste glass in France[J]. Procedia Materials Science, 2014, 7(1):3-9. |
[4] | 李玉松, 张生栋, 鲜亮, 等. CIAE高放废液固化技术研发进展[J]. 原子能科学技术, 2020, 54(S1):126-36. |
Li Yusong, Zhang Shengdong, Xian Liang, et al. Progress in research and development of vitrification technology for high-level radioactive liquid waste at CIAE[J]. Atomic Energy Science and Technology, 2020, 54(S1):126-36. | |
[5] | 李玉松, 王泽学, 张生栋, 等. 冷坩埚技术处理动力堆乏燃料高放废液的应用前景分析[J]. 核化学与放射化学, 2023, 45(1):1-7. |
Li Yusong, Wang Zexue, Zhang Shengdong, et al. Prosepective application of vitrificating high-level liquid waste from power reactor spent fuel in cold crucible induction melter[J]. Journal of Nuclear and Radiochemistry, 2023, 45(1):1-7. | |
[6] | 王泽学, 李宝军, 李玉松, 等. 高放废液冷坩埚玻璃固化自适应负压调节系统的设计[J]. 原子能科学技术, 2022, 56(12):2607-2615. |
Wang Zexue, Li Baojun, Li Yusong, et al. Design of adaptive negative pressure regulating system for glass solidification of HLLW by cold crucible[J]. Atomic Energy Science and technology, 2022, 56(12):2607-2615.
doi: 10.7538/yzk.2021.youxian.0523 |
|
[7] | 张安琪, 王泽学, 龙浩骑. 基于层次分析法的高放废液冷坩埚系统中煅烧炉的故障诊断与改进[J]. 广东化工, 2023, 50(3):110-112. |
Zhang Anqi, Wang Zexue, Long Haoqi. Fault diagnosis and improvement of the calciner in high-level liquid waste cold crucible system based on analytic hierarchy process[J]. Guangdong Chemical Industry, 2023, 50(3): 110-112. | |
[8] |
王泽学, 李玉松, 朱冬冬, 等. Φ100冷坩埚玻璃固化高频电源多物理场耦合仿真研究[J]. 原子能科学技术, 2023, 57(6):1076-1088.
doi: 10.7538/yzk.2022.youxian.0624 |
Wang Zexue, Li Yusong, Zhu Dongdong, et al. Multi-physical field coupling simulation of Φ100 cold crucible glass solidification high frequency power supply[J]. Aomic Energy Science and Technology, 2023, 57(6):1076-1088. | |
[9] | 周美兰, 李艳萍, 王吉昌. 高频感应加热电源系统设计[J]. 哈尔滨理工大学学报, 2015, 20(1):50-55. |
Zhou Meilan, Li Yanping, Wang Jichang. Design of high frequency induction heating power supply system[J]. Journal of Harbin University of Technology, 2015, 20(1): 50-55 | |
[10] | 石新春, 马莽原, 付超, 等. 基于SiC器件的固态超高频感应加热电源[J]. 电力电子技术, 2019, 53(1):72-74. |
Shi Xinchun, Ma Mangyuan, Fu Chao, et al. A ultra-high-frequency induction heating power supply based on SiC devices[J]. Power Electronics, 2019, 53(1): 72-74. | |
[11] | Gopalakrishnan S, Thess A. A simplified mathematical model of glass melt convection in a cold crucible induction melter[J]. International Journal of Thermal Sciences, 2012, 60(7):142-152. |
[12] | Chen R, Yang Y, Wang Q, et al. Dimensionless parameters controlling fluid flow in electromagnetic cold crucible[J]. Journal of Materials Processing Technology, 2017, 255(10):242-251. |
[13] | Song J H, Min B T, Kim J H, et al. An electromagnetic and thermal analysis of a cold crucible melting[J]. International Communications in Heat and Mass Transfer, 2005, 32(10):1325-1336. |
[14] | Gross C, Assmus W, Muiznieks A, et al. Power consumption of Skull melting,part I:Analytical aspects and experiments[J]. Crystal Research and Technology, 1999, 34(3):319-328. |
[15] | 丁慧慧, 邵婷婷, 乔曦. 基于BP神经网络的小角度井斜方位角误差补偿研究[J]. 电子科技, 2022, 35(5):33-37. |
Ding Huihui, Shao Tingting, Qiao Xi. Research on azimuth error compensation based on BP neural network at small-angle deviation[J]. Electronic Science and Technology, 2022, 35(5):33-37. | |
[16] | 周永长, 黄亚宇. 基于BP神经网络建立二次润叶工艺参数的预测模型[J]. 电子科技, 2022, 35(9):79-86. |
Zhou Yongchang, Huang Yayu. Establishment of a predictive model of the process parameters of secondary moisturzing based on BP neural network[J]. Electronic Science and Technology, 2022, 35(9):79-86. | |
[17] | 谢世龙, 张海搏, 张弛, 等. 基于模拟退火法的光伏阵列铺设倾角的确定[J]. 电子科技, 2015, 28(3):148-149,153. |
Xie Shilong, Zhang Haibo, Zhang Chi, et al. Laying angle determination of photovoltaic array based on simulated annealing algorithm[J]. Electronic Science and Technology, 2015, 28(3):148-149,153. | |
[18] | 陈华根, 吴健生, 王家林, 等. 模拟退火算法机理研究[J]. 同济大学学报(自然科学版), 2004, 48(6):802-805. |
Chen Huagen, Wu Jiansheng, Wang Jialin, et al. Mechanism study of simulated annealing algorithm[J]. Journal of Tongji University(Nature Science), 2004, 48(6):802-805. | |
[19] | 王丰雪, 陈家琪. 一种结合模拟退火和贪心策略的社团识别算法[J]. 电子科技, 2016, 29(2):8-11. |
Wang Fengxue, Chen Jiaqi. A community detection combining simulated annealing and greedy method[J]. Electronic Science and Technology, 2016, 29(2):8-11. |
[1] | YUAN Depin, ZHAO Liang, GE Xiansheng. Electromagnetic Signal Modulation Recognition Based on Complex-Valued Deep Neural Network [J]. Electronic Science and Technology, 2025, 38(3): 1-6. |
[2] | HE Yue, YUAN Tianchen, YANG Jian, SONG Ruigang. Research on MFC-Based Piezoelectric Vibration Energy Harvester [J]. Electronic Science and Technology, 2025, 38(3): 16-21. |
[3] | WANG Ziyi, CHEN Shiping. Self-Supervised Network Intrusion Detection Model Based on Graph Contrastive Learning [J]. Electronic Science and Technology, 2025, 38(3): 22-31. |
[4] | ZHAO Yunfei, XUE Cunjin. A Remote Sensing Image Water Extraction Method by Combining Atrous Convolution and Pooling Models [J]. Electronic Science and Technology, 2025, 38(3): 40-46. |
[5] | CHEN Yuyang, LI Feng. Integration of CNN and Transformer for Retinal OCT Image Fluid Segmentation Method [J]. Electronic Science and Technology, 2025, 38(3): 47-59. |
[6] | YE Xiangyu, LIN Xiaohui, DING Jiangqiao, XIE Weikun. Total Jitter Prediction Method of FPGA Embedded High-Speed Interface Based on Optimized BPNN [J]. Electronic Science and Technology, 2025, 38(2): 70-77. |
[7] | YANG Xiao, LI Gaolei. Persistent Clean-Label Backdoor Attack for Semi-Supervised Graph Node Classification [J]. Electronic Science and Technology, 2024, 37(9): 57-63. |
[8] | TONG Zhaojing, JING Lifei, LAN Mengyue. A Bayesian Network Optimization Method for Transformer Fault Diagnosis [J]. Electronic Science and Technology, 2024, 37(8): 34-39. |
[9] | LU Zhenyang. Overview of Research on Network Security Situation Prediction Technology [J]. Electronic Science and Technology, 2024, 37(8): 92-96. |
[10] | HAN Yinghao, LI Feifei. Scene Recognition Algorithm Based on Discriminative Patch Extraction and Two-Stage Classification [J]. Electronic Science and Technology, 2024, 37(7): 25-32. |
[11] | ZHAO Xu, HU Demin. Multi-Path Parallel Multi-Scale Feature Reuse for Remote Sensing Image Super-Resolution [J]. Electronic Science and Technology, 2024, 37(6): 61-68. |
[12] | YUAN Ao, QI Jinpeng, JIA Can, XUE Yuxin, GUO Yangyang. A Classification Method of Time Series Pathological Data Segments Based on Deep Learning [J]. Electronic Science and Technology, 2024, 37(6): 84-91. |
[13] | ZHU Jinkai, FANG Lanting, JI Xiaowen, HUANG Jie. Multimodal Android Malware Detection Method Based on Behavioral and Semantic Characteristics [J]. Electronic Science and Technology, 2024, 37(5): 71-78. |
[14] | PANG Jiangfei, SUN Zhanquan. Multi-Encoder Transformer for End-to-End Speech Recognition [J]. Electronic Science and Technology, 2024, 37(4): 1-7. |
[15] | GAO Dian, ZHANG Jing. Short-Term Load Forecasting Based on CEEMD-ITSA-BiLSTM Combined Model [J]. Electronic Science and Technology, 2024, 37(4): 30-37. |
|