Electronic Science and Technology ›› 2025, Vol. 38 ›› Issue (1): 59-72.doi: 10.16180/j.cnki.issn1007-7820.2025.01.009
Previous Articles Next Articles
CHEN Menglin, FENG Song(), WANG Di, LIU Yong, HU Xiangjian, FENG Lulu
Received:
2023-05-07
Revised:
2023-06-28
Online:
2025-01-15
Published:
2025-01-06
Supported by:
CLC Number:
CHEN Menglin, FENG Song, WANG Di, LIU Yong, HU Xiangjian, FENG Lulu. Research Progress of Silicon-Based Optical Waveguide Beam Splitter[J].Electronic Science and Technology, 2025, 38(1): 59-72.
Table 1.
Performance comparison of PBS with various structures"
文献 | 结构 | 尺寸/μm | 插入损耗/dB TE/TM | 消光比/dB TE/TM | 带宽/nm TE/TM |
---|---|---|---|---|---|
文献[ | 弯曲DC | 10.00×48.00 | - | >30.00/>15.00 | 195/195 |
文献[ | 弯曲DC | 4.90 | 0.55/0.55 | >14.00/>14.00 | 85/85 |
文献[ | SWG | 2.00×14.00 | - | >15.00/>15.00 | 72/72 |
文献[ | SWG | 6.80 | - | 23.76/23.76 | 80/80 |
文献[ | MMI | 2.00×14.00 | <1.00/<1.00 | 25.00/17.00 | 100/100 |
文献[ | MMI | - | 0.70/0.70 | >18.00/>18.00 | 100/100 |
文献[ | MMI | 4.80×21.00 | <1.20/<1.20 | >12.00/>12.00 | 350/350 |
文献[ | DC | 11.00 | 0.17/0.22 | >25.00/>25.00 | 120/120 |
文献[ | DC | 94.00×14.00 | <0.80/<0.80 | >30.60/>30.60 | 130/130 |
文献[ | DC | 112.00 | - | 23.00/10.00 | 80/80 |
文献[ | SWG | 4.60 | <0.50/<0.80 | >10.90/>10.90 | 420/420 |
文献[ | SWG | 33.60 | <0.30/<0.30 | 20.00/25.00 | 240/220 |
文献[ | MMI | 12.25×1.90 | <1.00/<1.00 | >20.00/>20.00 | >200/>200 |
文献[ | MMI | - | <1.00/<1.00 | >13.00/>13.00 | 120/120 |
文献[ | MMI | 71.50 | <2.00/<2.00 | >20.00/>20.00 | 77/77 |
文献[ 文献[ | MZI MZI | - - | <0.90/<0.90 <1.00/<1.00 | >47.70/>47.70 >20.00/>20.00 | >200/>200 350/350 |
Table 2.
Performance comparison of wavelength beam splitters with different structures"
文献 | 结构 | 工作波长 /nm | 耦合区长度 /μm | 插入损耗 /dB | 串扰/dB | 带宽/nm |
---|---|---|---|---|---|---|
文献[ | MMI | 1 300/1 550 | - | -0.23/-0.31 | -25.36/-22.73 | - |
文献[ | MMI | 1 550/2 000 | 290.00 | 0.14/1.20 | -18.83/-18.83 | - |
文献[ | MMI | 1 310/1 550 | 41.00 | <1.00/<1.00 | <-20.00/<-20.00 | 100/100 |
文献[ | DC | 1 310/1 550 | - | - | -24.14/-16.17 | - |
文献[ | DC | 1 310/1 550 | 23.00 | 0.10/0.32 | -20.92/-21.62 | 290/200 |
文献[ | SWG | 1 310/1 550 | 43.40 | <0.10/<0.10 | <-20.00/<-20.00 | 150/120 |
文献[ | SWG | 1 310/1 550 | 34.40 | - | -23.00/-14.00 | - |
文献[ | MMI | 1 300/1 550 | 240.00 | 1.88/2.57 | -24.14/-25.18 | 80/10 |
文献[ | MMI | 1 310/1 550 | 108.50 | 3.85/0.72 | -32.60/-19.40 | 74/103 |
文献[ | MMI | 1 310/1 550 | 44.00 | 0.45/0.45 | -27.20/-27.20 | 190/190 |
文献[ | DC | 1 310/1 550 | 6.00 | - | <-17.00/<-17.00 | - |
文献[ | DC | 1 322/1 550 | 21.50 | 0.24/0.28 | -12.30/-11.70 | - |
文献[ | DC | 1 310/1 550 | 22.80 | 0.05/0.05 | <-21.58/<-21.58 | 272/177 |
文献[ | SWG | 1 310/1 550 | 9.00 | 1.40/1.70 | -23.00/-19.00 | 85/140 |
文献[ | SWG | 1 310/1 550 | 13.50 | 0.27/0.08 | <-15.00/<-15.00 | 140/125 |
文献[ | MRR | 1 310/1 550 | 2.95 | 2.00/2.90 | -26.80/-37.80 | - |
文献[ | MRR | 1 525~1 555 | - | 2.00~5.00 | -20.00 | - |
Table 3.
Performance comparison of various optical power beam splitters"
文献 | 结构 | 工作波长/nm | 器件尺寸 /μm | 附加损耗 /dB | 均匀性 /dB | 带宽/nm |
---|---|---|---|---|---|---|
文献[ | Y | 1 550 | 2.88×2.88 | <1.50 | 0.080 | 80 |
文献[ | Y | 1 550 | - | 0.19 | 0.070 | 500 |
文献[ | Y | 1 550 | 1.40×2.30 | <0.50 | <0.070 | 100 |
文献[ | Y | 1 588~2 033 | 5.40×2.88 | <0.83 | - | 445 |
文献[ | Y | 1 260~1 625 | 2.00×1.20 | <0.15 | - | 365 |
文献[ | MMI | 1 550 | 1.16×5.20 | <0.10 | 0.200 | 30 |
文献[ | MMI | - | 5.00×86.50 | <0.76 | - | - |
文献[ | MMI | 1 500~1 600 1 979~2 050 | 3.10×42.70 | 0.21 0.32 | <0.550 | 100 71 |
文献[ | MMI-SWG | 1 550 | 2.20×3.80 | 0.07 | <0.100 | 200 |
文献[ | MMI-SWG | 1 550 | 2.50×3.20 | 0.08 | 0.400 | 560 |
文献[ | DC | 1 480~1 620 | 22.00 | <0.04 | - | 140 |
文献[ | DC | 1 550 | 3.00×50.00 | <1.00 | - | 600 |
文献[ | DC | 1 550 | 1.60×21.00 | <0.60 | - | 200 |
文献[ | DC-SWG | 1 550 | 1.90×16.50 | 0.10 | 0.004 | 200 |
文献[ | DC-SWG | 1 550 | 1.32×11.50 | 0.65 | - | 85 |
文献[ | DC-SWH | 1 550 | 1.70×4.00 | 0.34 | - | 240 |
[1] | Miller S E. Integrated optics:An introduction[J]. Bell Labs Technical Journal, 1969, 48(7):2059-2069. |
[2] |
Yin S J, Qiu H Q, Wang Z B, et al. On-chip silicon switchable polarization beam splitter[J]. Optics Letters, 2022, 47(4):961-964.
doi: 10.1364/OL.451486 pmid: 35167569 |
[3] | Aparna U, Kumar M S. Ultra-compact plasmonic unidirectional wavelength multiplexer/demultiplexer based on slot cavities[J]. Optical Review, 2022, 29(1):51-58. |
[4] | Serecunova S, Seyringer D, Uherek F, et al. Design and optimization of optical power splitters for optical access networks.[J]. Optical & Quantum Electronics, 2022, 54(6):1-9. |
[5] |
Tan K, Huang Y, Lo G Q, et al. Experimental realization of an O-band compact polarization splitter and rotator[J]. Optics Express, 2017, 25(4):3234-3241.
doi: 10.1364/OE.25.003234 pmid: 28241539 |
[6] | Barwicz T, Watts M R, Popovi M A, et al. Polarization transparent microphonic devices in the strong confinement limit[J]. Nature Photonics, 2007, 1(1):57-60. |
[7] | Liu A, Ling L, Chetrit Y, et al. Wavelength division multiplexing based photonic integrated circuits on silicon-on-insulator platform[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1):23-32. |
[8] | Singh J, Kumar N. Performance analysis of different modulation format on free space optical communication system[J]. Optik, 2013, 124(20):4651-4654. |
[9] | Wu S B, Zhao Z C, Feng T, et al. Compactcross-slot waveguide polarization beam splitter using a sandwichtype couple[J]. Applied Optics, 2020, 59(5):1447-1453. |
[10] | Li C L, Dai D X. Compact polarization beam splitter based on a three-waveguide asymmetric coupler with a 340-nm-thick silicon core layer[J]. Journal of Lightwave Technology, 2018, 36(11):2129-2134. |
[11] | Yang J Y, Dong Y, Xu Y, et al. Broadband and high extinction ratio polarization beam splitter on tilted subwavelength gratings waveguide[J]. Applied Optics, 2020, 59(25):7705-7711. |
[12] | Dai S J, Xiao J B. Compact and broadband silicon based polarization beam splitter using asymmetric directional couplers embedded with subwavelength gratings and slots[J]. Applied Optics, 2022, 61(1):126-134. |
[13] | Xu L H, Wang Y, Kumar A, et al. Polarization beam splitter based on MMI coupler with SWG birefringence engineering on SOI[J]. IEEE Photonics Technology Letters, 2018, 30(4):403-406. |
[14] | Dai D X, Wang Z, Peters J, et al. Compact polarization beam splitter using an asymmetrical Mach-Zehnder interferometer based on silicon-on-insulator waveguides[J]. IEEE Photonics Technology Letters, 2012, 24(8):673-675. |
[15] |
Liu X Y, Liu D J, Dai D X. Silicon polarization beam splitter at the 2 μm wavelength band by using a bent directional coupler assisted with a nano-slot waveguide[J]. Optics Express, 2021, 29(2):2720-2726.
doi: 10.1364/OE.403932 pmid: 33726463 |
[16] | Zhu J B, Huang H Y, Zhao Y X, et al. Ultra-compact mode multiplexer and polarization beam splitter based on tapered bent asymmetric directional couplers[J]. IEEE Photonics Journal, 2022, 14(1):1-6. |
[17] |
Luque-González J M, Herrero-Bermello A, Ortega-Moñux A, et al. Polarization splitting directional coupler using tilted subwavelength gratings[J]. Optics Letters, 2020, 45(13):3398-3401.
doi: 10.1364/OL.394696 pmid: 32630855 |
[18] | Liu H P, Feng J J, Ge J M, et al. Tilted nano-grating based ultra-compact broadband polarizing beam splitter for silicon photonics[J]. Nanomaterials(Basel,Switzerland), 2021, 11(10):2645-2654. |
[19] | Sun X, Aitchison J S, Mojahedi M. Realization of an ultracompact polarization beam splitter using asymmetric MMI based on silicon nitride/silicon-on-insulator platform[J]. Optics Express, 2017, 25(7):8296-8305. |
[20] |
Kudalippalliyalil R, Murphy T E, Grutter K. Low-loss and ultra-broadband silicon nitride angled MMI polarization splitter/combiner[J]. Optics Express, 2020, 28(23):34111-34122.
doi: 10.1364/OE.405188 pmid: 33182888 |
[21] | Farhadi S, Miri M, Alighanbari A. Design and simulation of a compact and ultra-wideband polarization beamsplitter based on subwavelength grating multimode interference coupler[J]. Applied Physics, 2020, 126(7):1-11. |
[22] | Mao S M, Cheng L R, Zhao C Y, et al. Ultra-broadband and ultra-compact polarization beam splitter based on tapered subwavelength-grating waveguide and slot waveguide[J]. Optics Express, 2021, 29(18):28066-28077. |
[23] | Shi Y C, Dai D X, Liu L, et al. Proposal for an ultra-broadband polarization beam splitter using anisotropy-engineered Mach-Zehnder interferometer on x-cut lithium-niobate-on-insulator[J]. Optics Express, 2020, 28(8):10899-10908. |
[24] | Xu H N, Dai D X, Shi Y C. Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials[J]. Laser & Photonics Reviews, 2019, 13(4):1-7. |
[25] |
Tian Y, Qiu J F, Liu C, et al. Compact polarization beam splitter with a high extinction ratio over S+C+L band[J]. Optics Express, 2019, 27(2):999-1009.
doi: 10.1364/OE.27.000999 pmid: 30696187 |
[26] | Li C L, Zhang M, John E, et al. Ultra-broadband polarization beam splitter with silicon subwavelength grating waveguides[J]. Optics Letters, 2020, 45(8):2259-2262. |
[27] |
Bhandari B, Imire C, Sapkota O R, et al. Highly efficient broadband silicon nitride polarization beam splitter incorporating serially cascaded asymmetric directional couplers[J]. Optics Letters, 2020, 45(21):5974-5977.
doi: 10.1364/OL.405031 pmid: 33137044 |
[28] |
Herrero-Bermello A, Dias-Ponte A, Luque-González J M, et al. Experimental demonstration of metamaterial anisotropy engineering for broadband on-chip polarization beam splitting[J]. Optics Express, 2020, 28(11):16385-16393.
doi: 10.1364/OE.389070 pmid: 32549462 |
[29] | Xu L H, Wang Y, El-Fiky E, et al. Compact broad-band polarization beam splitter based on multimode interference coupler with internal photonic crystal for the SOI platform[J]. Journal of Lightwave Technology, 2019, 37(4):1231-1240. |
[30] | Patsamanis G, Ketzaki D, Chatzitheocharis D, et al. Design and optimization of a compact ultra-broadband polarization beam splitter for the SCL-band based on a thick silicon nitride platform[J]. Photonics, 2022, 9(5):552-565. |
[31] | Lin Z X, Chen K X, Huang Q S, et al. Ultra-broadband polarization beam splitter based on cascaded Mach-Zehnder interferometers assisted by effectively anisotropic structures[J]. IEEE Photonics Journal, 2021, 13(1):1-9. |
[32] | Xiong K, Xiao X, Li X Y, et al. CMOS-compatible reconfigurable microring demultiplexer with doped silicon slab heater[J]. Optics Communications, 2012, 285(21-22):4368-4371. |
[33] | Shoresh T, Katanov N, Malka D. 1×4 MMI visible lightwavelength demultiplexer based on a GaN slot-waveguide structure[J]. Photonics and Nanostructures-Fundamentals and Applications, 2018, 30(1):45-49. |
[34] | Song J H, Kim K Y, Cho J, et al. Thin film filter-embedded triplexing-filters based on directional couplers for FTTH networks[J]. IEEE Photonics Technology Letters, 2005, 17(8):1668-1670. |
[35] | Wang F L, Xu X, Sun C L, et al. Ultra-compact 1 310/1 550 nm wavelength demultiplexer based on subwavelength grating-assisted multimode interference coupler[J]. Optical Engineering, 2021, 60(8):104-110. |
[36] | Tsao S L, Guo H C, Tsai C W. A novel 1×2 single-mode 1 300/1 550 nm wavelength division multiplexer with output facet-tilted MMI waveguide[J]. Optics Communications, 2004, 232(6):371-379. |
[37] |
Rouifed M S, Littlejohns C G, Tina G X, et al. Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55 μm and 2 μm[J]. Optics Express, 2017, 25(10):10893-10900.
doi: 10.1364/OE.25.010893 pmid: 28788777 |
[38] |
Mohammed Z, Paredes B, Rasraset M, et al. CMOS compatible ultra-compact MMI based wavelength diplexer with 60 Gbit/s system demonstration[J]. Optics Express, 2022, 30(5):8257-8265.
doi: 10.1364/OE.452421 pmid: 35299571 |
[39] | Choi C H. Design and fabrication of a novel 1 310 nm/1 550 nm directional coupler wavelength demultiplexer[J]. Proceedings of SPIE the International Society for Optical Engineering, 2005, 5723(1):368-376. |
[40] | 汪静丽, 陈子玉, 陈鹤鸣. 基于夹层结构的偏振无关1×2定向耦合型解复用器的设计[J]. 物理学报, 2021, 70(1):301-308. |
Wang Jingli, Chen Ziyu, Chen Heming. Design of polarization-insensitive 1×2 directional couplerdemultiplexer based on sandwiched structure[J]. Acta Physica Sinica, 2021, 70(1):301-308. | |
[41] | Liu L, Deng Q Z, Zhou Z P. An ultra-compact wavelength diplexer engineered by subwavelength grating[J]. IEEE Photonics Technology Letters, 2017, 29(22):1927-1930. |
[42] | Taglietti B, Chen L R. Subwavelength grating waveguide-based 1 310/1 550 nm diplexer[C]. Vancouver: IEEE Photonics Conference, 2022:1-2. |
[43] | Chack D, Kumar V, Raghuwanshi S K, et al. Design and analysis of O-S-C triple band wavelength division demultiplexer using cascaded MMI couplers[J]. Optics Communications, 2017, 38(2):324-331. |
[44] | Xu L H, Wang Y, Mao D, et al. Broadband 1 310/1 550 nm wavelength demultiplexer based on a multimode interference coupler with tapered internal photonic crystal for the silicon-on-insulator platform[J]. Optics Letters, 2019, 44(7):1770-1773. |
[45] | Wang J L, Huangfu L G, Chen H M, et al. Design of ultra-compact and polarization insensitive multimode interference demultiplexer[J]. Optics Communications, 2021, 50(4):127333-127340. |
[46] | Liu Z C, Qiu Y, Yang Q, et al. Ultracompact wavelength and polarization directional coupler based on nanowire waveguides[J]. Journal of Modern Optics, 2017, 64(15):1538-1543. |
[47] | Hua K M, Chen B. Study on asymmetric wavelength division demultiplexer based on directional coupling in slot waveguides[C]. Xi'an: IEEE International Conference on Electron Devices and Solid-State Circuits, 2019:1-3. |
[48] | 汪静丽, 刘海广, 张跃腾, 等. SiNx填充的定向耦合器型偏振无关解复用器[J]. 光学学报, 2022, 42(19):175-183. |
Wang Jingli, Liu Haiguang, Zhang Yueteng, et al. Directionalcoupler-based polarization-independent demultiplexer filled with SiNx[J]. Acta Optica Sinica, 2022, 42(19):175-183. | |
[49] | Wang F L, Xu X, Zhang C, et al. Design and demonstration of compact and broadband wavelength demultiplexer based on subwavelength grating[J]. IEEE Photonics Journal, 2022, 14(2):1-6. |
[50] | Chen J Y. A broadband wavelength demultiplexer assisted by SWG-based directional couplers[J]. Optik International Journal for Light & Electron Optics, 2020, 20(2):163602-163607. |
[51] | Chia Ti W, Chia Chih H, Yeun Chung L. Plasmonic wavelength demultiplexer with a ring resonator using high-order resonant modes[J]. Applied Optics, 2017, 56(14):4039-4044. |
[52] |
Wang S P, Feng X L, Gao S M, et al. On-chip reconfigurable optical add-drop multiplexer for hybrid wavelength/mode-division-multiplexing systems[J]. Optics Letters, 2017, 42(14):2802-2805.
doi: 10.1364/OL.42.002802 pmid: 28708173 |
[53] | Yajima H. Dielectric thin-film optical branching waveguide[J]. Applied Physics Letters, 1973, 22(12):647-649. |
[54] | Wang Y, Gao S T, Wang K, et al. Ultra-broadband and low-loss 3 dB optical power splitter based on adiabatic tapered silicon waveguides[J]. Optics Letters, 2016, 41(9):2053-2056. |
[55] | Lin Z J, Shi W. Broadband low-loss silicon photonic Y-junction with an arbitrary power splitting ratio[J]. Optics Express, 2019, 27(10):14338-14343. |
[56] | Zhou H F, Song J F, Li C, et al. A library of ultra-compact multimode interference optical couplers on SOI[J]. IEEE Photonics Technology Letters, 2013, 25(12):1149-1152. |
[57] | Liu R F, Lu L H, Zhang P Q, et al. Integrated dual-mode 3 dB power splitter based on multimode interference coupler[J]. IEEE Photonics Technology Letters, 2020, 32(14):883-886. |
[58] | Shi Y C, Shao B, Zhang Z K, et al. Ultra-broadband and low-loss silicon-based power splitter based on subwavelength grating-assisted multimode interference structure[J]. Photonics, 2022, 9(7):435-446. |
[59] | Zheng D, Ma Y H, Pan W, et al. Polarization-insensitive broadband 3 dB optical power splitter based on silicon curved directional coupler with Rib waveguide[C]. Chengdu: Asia Communications and Photonics Conference, 2019:1-3. |
[60] |
Zhao S, Liu W X, Chen J Y, et al. Broadband arbitrary ratio power splitters based on directional couplers with subwavelength structure[J]. IEEE Photonics Technology Letters, 2021, 33(10):479-482.
doi: 10.1109/LPT.2021.3070464 |
[61] |
Chang W J, Ren X S, Ao Y Q, et al. Inverse design and demonstration of an ultracompact broadband dual-mode 3 dB power splitter[J]. Optics Express, 2018, 26(18):24135-24144.
doi: 10.1364/OE.26.024135 pmid: 30184905 |
[62] | Xu J F, Liu Y J, Guo X Y, et al. Inverse design of a dual-mode 3 dB optical power splitter with a 445 nm bandwidth[J]. Optics Express, 2022, 30(15):26266-26274. |
[63] | Prosopio G, Rgarcia G J L, Jara F, et al. Angle-based parametrization with evolutionary optimization for OESCL-band Y-junction splitters[J]. Photonics, 2023, 10(2):152-165. |
[64] | Yi Q Y, Cheng G L, Yan Z W, et al. Silicon MMI-based power splitter for multi-band operation at the 1.55 and 2 μm wave bands[J]. Optics Letters, 2023, 48(5):1335-1338. |
[65] | Zhong W Q, Xiao J B. Ultra compact polarization-insensitive power splitter using subwavelength-grating-based MMI couplers on an SOI platform[J]. Applied Optics, 2020, 59(7):1991-1997. |
[66] | Zhang Y G, Xiao H, Chen D G, et al. Ultra-broadband 3 dB power splitter based on silicon slot waveguide[C]. San Jose: Conference on Lasers and Electro Optics, 2018:1-2. |
[67] | Xu Q H, Tao J F, Sun C L, et al. Broadband polarization-independent directional coupler using asymmetric-waveguides[J]. IEEE Photonics Journal, 2019, 11(6):1-6 |
[68] | Yang N, Xiao J B. A compact silicon-based polarization-independent power splitter using a three-guide directional coupler with subwavelength gratings[J]. Optics Communications, 2020, 45(9):125095-125101. |
[69] |
Chen Y F, Zhang J, Zhu M, et al. Ultra-compact and broadband all-silicon TM-pass power splitter using subwavelength holey-structured metamaterial waveguides[J]. Optics Express, 2022, 30(25):44604-44616.
doi: 10.1364/OE.477109 pmid: 36522882 |
[1] | FENG Lulu,FENG Song,HU Xiangjian,CHEN Menglin,LIU Yong,WANG Di. Research Status of Mid-Infrared Silicon-Based Optical Waveguides [J]. Electronic Science and Technology, 2024, 37(2): 36-45. |
[2] | WANG Peng,LI Xiangyu. Design of High-Dynamic-Range Vector Impedance Measurement Module Based on Directional Coupler [J]. Electronic Science and Technology, 2023, 36(11): 14-18. |
[3] | CHEN Xiaoli,XUE Huanjie,GUAN Boran. A Broadband High Directional Microstrip Directional Coupler [J]. Electronic Science and Technology, 2021, 34(1): 1-4. |
[4] | WANG Yaru,WANG Zhengling,HU Xinzhi,TONG Weiyang. Resonant Absorption Spectrum and Near Field Characteristics of Subwavelength Metallic Gratings [J]. , 2017, 30(4): 119-. |
[5] | FENG Xingang,XU Ping. Accurate Detection of Output Signal Level of Wideband Power Amplifier [J]. , 2016, 29(4): 144-. |
[6] | TANG Yuankai,WANG Zhengling,LIU Qingya. Mode Properties and Diffraction Efficiency of Subwavelength Grating and Their Applications [J]. , 2016, 29(3): 118-. |
[7] | LI Gang1, HU Xu2. Fast Extraction Method of Filter Intercavity Coupling Coefficients [J]. , 2016, 29(11): 25-. |
[8] | XUAN Bin,GUO Wenshen. Design of Coplanar 2×3 Switch Matrix Used in X-band [J]. , 2013, 26(6): 19-. |
[9] | RAN Tao, FU Guang, FAN Yi-Peng. A Novel Dual-Layer Microstrip Directional Coupler [J]. , 2011, 24(1): 118-. |
|