[1] |
Wu S, Nagahashi H. Parameterized daBoost:Introducing a parameter to speed up the training of real AdaBoost[J]. IEEE Signal Processing Letters, 2014, 21(6):687-691.
|
[2] |
Wang C C R, Lien J J J. Automatic vehicle detection using local features-A statistical approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2008, 9(1):83-96.
|
[3] |
Yang X F, Yang Y. A method of efficient vehicle detection based on HOG-LBP[J]. Computer Engineering, 2014, 40(9):210-214.
|
[4] |
Tu W T, Guo J X. Research on vehicle detection technology based on SIFT feature[C]. Beijing: The Eighth International Conference on Electronics Information and Emergency Communication, 2018:274-278.
|
[5] |
Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]. Nashville: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014:580-587.
|
[6] |
Ren S, He K, Girshick R, et al. Faster R-CNN:Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6):1137-1149.
|
[7] |
Vuola A O, Akram S U, Kannala J. Mask R-CNN and U-Net ensembled for nuclei segmentation[C]. Venice: IEEE the Sixteenth International Symposium on Biomedical Imaging, 2019:208-212.
|
[8] |
Cai Z, Vasconcelos N. Cascade R-CNN:Delving into high quality object detection[C]. Venice: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:6154-6162.
|
[9] |
段仲静, 李少波, 胡建军, 等. 深度学习目标检测方法及其主流框架综述[J]. 激光与光电子学展, 2020, 57(12):59-74.
|
|
Duan Zhongjing, Li Shaobo, Hu Jianjun, et al. Review of deep learning based object detection methods and their mainstream frameworks[J]. Laser & Optoelectronics Progress, 2020, 57(12):59-74.
|
[10] |
Liu W, Anguelov D, Erhan D, et al. SS:Single shot multibox detector[C]. Amsterdam: Proceedings of the Fourteenth European Conference,Springer International Publishing, 2016:1-37.
|
[11] |
Redmon J, Divvala S, Girshick R, et al. You only look once:Unified,real-time object detection[C]. New Orleans: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016:779-788.
|
[12] |
刘肯, 何姣姣, 张永平, 等. 改进YOLO的车辆检测算法[J]. 现代电子技术, 2019, 42(13):47-50.
|
|
Liu Ken, He Jiaojiao, Zhang Yongping, et al. Improve YOLO vehicle detection algorithm[J]. Modern Electronics Technique, 2019, 42(13):47-50.
|
[13] |
杨帆, 吴韶波. 基于SSD的目标车辆检测算法研究[J]. 物联网技术, 2021, 11(6):19-22.
|
|
Yang Fan, Wu Shaobo. Research on target vehicle detection algorithm based on SSD[J]. Internet of Technologies, 2021, 11(6):19-22.
|
[14] |
Dong W, Yang Z, Ling W, et al. Research on vehicle detection algorithm based on convolutional neural network and combining color and depth images[C]. Munich: The Second International Conference on Information Systems and Computer Aided Education, 2019:274-277.
|
[15] |
Jiang P, Ergu D, Liu F, et al. A review of YOLO algorithm developments[J]. Procedia Computer Science, 2022, 19(9):1066-1073.
|
[16] |
梁鸿, 王庆玮, 张千, 等. 小目标检测技术研究综述[J]. 计算机工程与应用, 2021, 57(1):17-28.
|
|
Liang Hong, Wang Qingwei, Zhang Qian, et al. Small object detection technology:A review[J]. Computer Engineering and Applications, 2021, 57(1):17-28.
|
[17] |
Wang Q, Wu B, Zhu P, et al. ECA-Net:Efficient channel attention for deep convolutional neural networks[C]. Nashville: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020:11534-11542.
|
[18] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]. Salt Lake City: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018:7132-7141.
|
[19] |
张莹, 刘子龙, 万伟. 基于Faster R-CNN的无人机车辆目标检测[J]. 电子科技, 2021, 34(11):11-20.
|
|
Zhang Ying, Liu Zilong, Wan Wei. UAV vehicle target detection based on Faster R-CNN[J]. Electronic Science and Technology, 2021, 34(11):11-20.
|
[20] |
Han G, Su J, Zhang C. A method based on multi-convolution layers joint and generative adversarial networks for vehicle detection[J]. KSII Transactions on Internet and Information Systems, 2019, 13(4):1795-1811.
|
[21] |
Chu J, Guo Z, Leng L. Object detection based on multi-layer convolution feature fusion and online hard example mining[J]. IEEE Access, 2018, 6(1):19959-19967.
|