[1] |
Tao W, Li C, Song R C, et al. EEG-based emotion recognition via channel-wise attention and self attention[J]. IEEE Transactions on Affective Computing, 2023, 14(1):382-393.
|
[2] |
Han J, Zhang Z X, Ren Z, et al. EmoBed:Strengthening monomodal emotion recognition via training with cross model emotion embeddings[J]. IEEE Transactions on Affective Computing, 2019, 12(3):553-564.
|
[3] |
Puk K M, Wan S, Rosenberger J, et al. Emotion recognition and EEG analysis using ADMM-based sparse group lasso[J]. IEEE Transactions on Affective Computing, 2019, 13(1):199-210.
|
[4] |
Brintha N C, Narayana J A, Jaswanth G L V S, et al. Realtime facial emotion detection using machine learning[C]. Chennai: Intelligent Communication and Smart Electrical Systems,2022:1-5.
|
[5] |
Zhang X W, Liu J Y, Shen J, et al. Emotion recognition from multimodal physiological signals using a regularized deep fusion of kernel machine[J]. IEEE Transactions on Cybernetics, 2021, 51(4):4386-4399.
|
[6] |
张悦, 胡春燕. 基于有记忆递归神经网络的脑电特征情感识别研究[J]. 电子科技, 2020, 33(11):67-72.
|
|
Zhang Yue, Hu Chunyan. Research on emotion recognition of EEG features based on the long short-term memory meural metwork[J]. Electronic Science and Technology, 2020, 33(11):67-72.
|
[7] |
Zhang F, Li X C, Hua Q, et al. Deep emotional arousal network for multimodal sentiment analysis and emotion recognition[J]. Information Fusion, 2022, 88(1):296-304.
|
[8] |
Louis N D, Perry A, Wesseling P, et al. The WHO classification of tumors of the central nervous system:A summary[J]. Neuro-Oncology, 2021, 23(8):1231-1251.
|
[9] |
Huang Y J, Wu C Y, Wong A M K, et al. Novel active comb-shaped dry electrode for EEG measurement in hairy site[J]. IEEE Transactions on Biomedical Engineering, 2015, 62(1):256-263.
|
[10] |
Du G L, Su J S, Zhang L L, et al. A multi-dimensional graph convolution network for EEG emotion recognition[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71(7):1-11.
|
[11] |
Zhang F, Li X C, Lim C P, et al. Deep emotional arousal network for multimodal sentiment analysis and emotion recognition[J]. Information Fusion, 2022, 88(12):296-304.
|
[12] |
Bogner F X. Open schooling matters:Student effects in science motivation,intrinsic motivation and state emotions[J]. Journal of Higher Education Theory and Practice, 2023, 23(2):136-152.
|
[13] |
Jiang Y Y, Li W, Chen M, et al. A snapshot research and implementation of multimodal information fusion for data-driven emotion recognition[J]. Information Fusion, 2020, 53(10):209-221.
|
[14] |
Yin Z, Zhao M Y, Zhang J H, et al. Recognition of emotions using multimodal physiological signals and an ensemble deep learning model[J]. Computer Methods and Programs in Biomedicine, 2022, 140(10):93-110.
|
[15] |
Yao Q L, Gu H, Wang S D, et al. A feature-fused convolutional neural network for emotion recognition from multichannel EEG signals[J]. IEEE Sensors Journal, 2022, 22(12):11954-11964.
|
[16] |
Koelstra S, Muhl C, Soleymani M, et al. DEAP:A database for emotion analysis:Using physiological signals[J]. IEEE Transactions on Affective Computing, 2012, 3(1):18-31.
|
[17] |
Zhou T H, Liang W L, Liu H Y, et al. EEG emotion recognition applied to the effect analysis of music on emotion changes in psychological healthcare[J]. International Journal of Environmental Research and Public Health, 2022, 20(1):378-381.
|
[18] |
Kostiuk B, Costa Y M, Britto A S, et al. Multi-label emotion classification in music videos using ensembles of audio and video features[C]. Portland: Proceedings of the IEEE the Thirty-first International Conference on Tools with Artificial Intelligence,2019:517-523.
|
[19] |
Duan R N, Zhu J Y, Lu B L. Differential entropy feature for EEG-based emotion classification[C]. San Diego: The Sixth International IEEE/EMBS Conference on Neural Engineering, 2013:81-84,
|
[20] |
Zheng W L, Liu W, Lu Y F, et al. Emotion meter:A multimodal framework for recognizing human emotions[J]. IEEE Transactions on Cybernetics, 2019, 49(3): 1110-1122.
|
[21] |
Li T H, Liu W, Zheng W L, et al. Classification of five emotions from EEG and eye movement signals: discrimination ability and stability over time[C]. San Francisco: The Ninth International IEEE/EMBS Conference on Neural Engineering,2019:607-610.
|
[22] |
Atkinson J, Campos D. Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers[J]. Expert Systems with Applications, 2016, 47(4):35-41.
|
[23] |
Soleymani M, Pantic M, Pun T, et al. Multimodal emotion recognition in response to videos[J]. IEEE Transactions on Affective Computing, 2012, 3(2):211-223.
|