[1] |
Long J, Shelhamer E, Darreii T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4):640-651.
|
[2] |
Lian S, Luo Z, Zhong Z, et al. Attention guided U-Net for accurate iris segmentation[J]. Journal of Visual Communication and Image Representation, 2018, 56(1):296-304.
|
[3] |
Orlando I J, Seeböck P, Bogunovic H, et al. U2-Net:A Bayesian U-Net model with epistemic uncertainty feedback for photoreceptor layer segmentation in pathological OCT scans[J]. Computing Research Repository, 2019, 10(9):123-128.
|
[4] |
欧晓焱. 基于注意力机制的DeepLab v3+语义分割算法研究[D]. 南京: 南京邮电大学,2022:1-42.
|
|
Ou Xiaoyan. Research on DeepLab v3+ semantic segmentation algorithm based on attention mechanism[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022:1-42.
|
[5] |
王盛, 吴浩, 彭宁, 等. 改进U2-Net的太阳能电池片缺陷分割方法[J]. 国外电子测量技术, 2023, 42(2):177-184.
|
|
Wang Sheng, Wu Hao, Peng Ning, et al. Improved U2-Net defect segmentation method for solar cells[J]. Foreign Electronic Measurement Technology, 2023, 42(2):177-184.
|
[6] |
陈其浩, 孙林, 张倩. 基于改进U2-Net的透明件划痕检测方法[J]. 科学技术与工程, 2022, 22(2):620-627.
|
|
Chen Qihao, Sun Lin, Zhang Qian. Scratch detection method of transparent parts based on improved U2-Net[J]. Science Technology and Engineering, 2022, 22(2):620-627.
|
[7] |
胡智翔, 鲍胜利, 徐传淇, 等. 基于DeepLab v3+的遥感建筑物语义分割算法[J]. 计算机应用, 2021, 41(S2):71-75.
|
|
Hu Zhixiang, Bao Shengli, Xu Chuanqi, et al. Semantic segmentation algorithm for remote sensing buildings based on DeepLab v3+[J]. Journal of Computer Applications, 2021, 41(S2):71-75.
|
[8] |
杨中科. 基于深度卷积神经网络的图像语义分割算法研究[D]. 太原: 太原理工大学,2021:1-52.
|
|
Yang Zhongke. Research on image semantic segmentation algorithm based on deep convolutional neural networks[D]. Taiyuan: Taiyuan University of Technology,2021:1-52.
|
[9] |
徐聪, 王丽. 基于改进DeepLabv3+网络的图像语义分割方法[J]. 激光与光电子学进展, 2021, 58(16):225-232.
|
|
Xu Cong, Wang Li. Imagesemantic segmentation method based on improved DeepLab v3+ network[J]. Laser and Optoelectronics Progress, 2021, 58(16):225-232.
|
[10] |
张乔木, 钟倩文, 孙明, 等. 复杂环境下弓网接触位置动态监测方法研究[J]. 电子科技, 2022, 35(8):66-72.
|
|
Zhang Qiaomu, Zhong Qianwen, Sun Ming, et al. Research on dynamic monitoring method of pantograph-net contact position in complex environment[J]. Electronic Science and Technology, 2022, 35(8):66-72.
|
[11] |
罗会兰, 易慧. 基于迭代训练和集成学习的图像分类方法[J]. 计算机工程与设计, 2020, 41(5):1301-1307.
|
|
Luo Huilan, Yi Hui. Image classification method based on iterative training and ensemble learning[J]. Computer Engineering and Design, 2020, 41(5):1301-1307.
|
[12] |
闫超, 孙占全, 田恩刚, 等. 基于深度学习的医学图像分割技术研究进展[J]. 电子科技, 2021, 34(2):7-11.
|
|
Yan Chao, Sun Zhanquan, Tian Engang, et al. Research progress of medical image segmentation based on deep learning[J]. Electronic Science and Technology, 2021, 34(2):7-11.
|
[13] |
蒋芸, 王发林, 张海. 基于集成分类型深度神经网络的视网膜眼底血管图像分割[J]. 计算机工程与科学, 2021, 43(5):862-871.
|
|
Jiang Yun, Wang Falin, Zhang Hai. Image segmentation of retinal fundus vessels based on ensembled classified deep neural network[J]. Computer Engineering and Science, 2021, 43(5):862-871.
|
[14] |
朱诗生, 王慧娟, 李淳鑫. 基于深度学习和模型集成的肺结节分割方法[J]. 计算机技术与发展, 2023, 33(2):208-213.
|
|
Zhu Shisheng, Wang Huijuan, Li Chunxin. Pulmonary nodule segmentation method based on deep learning and model integration[J]. Computer Technology and Development, 2023, 33(2):208-213.
|
[15] |
王财勇, 孙哲南. 虹膜分割算法评价基准[J]. 计算机研究与发展, 2020, 57(2):395-412.
|
|
Wang Caiyong, Sun Zhenan. A benchmark for iris segmentation[J]. Journal of Computer Research and Development, 2020, 57(2):395-412.
|
[16] |
尤轩昂, 赵鹏, 慕晓冬, 等. 融合注意力机制与密集多尺度特征的异质噪声虹膜分割方法[J]. 激光与光电子学进展, 2022, 59(4):109-120.
|
|
You Xuanang, Zhao Peng, Mu Xiaodong, et al. Heterogeneousnoise iris segmentation based on attention mechanism and dense multiscale features[J]. Laser and Optoelectronics Progress, 2022, 59(4):109-120.
|
[17] |
张珅睿. 基于神经网络的图像语义分割方法[D]. 武汉: 华中科技大学,2021:1-68.
|
|
Zhang Shenrui. Image semantic segmentation method based on neural network[D]. Wuhan: Huazhong University of Science and Technology,2021:1-68.
|
[18] |
李艾瑾. 基于注意力机制和深度多尺度融合网络的语义分割研究[D]. 西安: 西安电子科技大学,2021:1-64.
|
|
Li Aijin. Attention mechanism and deep multiscale fusion network for semantic segmentation[D]. Xi'an: Xidian University,2021:1-64.
|