[1] |
李鹏程. 基于张量紧凑表示的视频压缩算法[J]. 电子科技, 2017, 30(5):1-4.
|
|
Li Pengcheng. Video compression algorithm based on tensor compact representation[J]. Electronic Science and Technology, 2017, 30(5):1-4.
|
[2] |
Lu M, Wang Y, Pan G. Generating fluent tubes in video synopsis[C]. Vancouver: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal, 2013.
|
[3] |
Zhong R, Hu R, Wang Z, et al. Fast synopsis for moving objects using compressed video[J]. IEEE Signal Processing Letters, 2014, 21(7):834-838.
doi: 10.1109/LSP.2014.2317754
|
[4] |
Nie Y, Xiao C, Sun H, et al. Compact video synopsis via global spatiotemporal optimization[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(10):1664-1676.
doi: 10.1109/TVCG.2012.176
|
[5] |
He Y, Gao C, Sang N, et al. Graph coloring based surveillance video synopsis[J]. Neurocomputing, 2017, 225(15): 64-79.
doi: 10.1016/j.neucom.2016.11.011
|
[6] |
Ruan T, Wei S, Li J, et al. Rearranging online tubes for streaming video synopsis: a dynamic graph coloring approach[J]. IEEE Transactions on Image Processing, 2019, 28(8):3873-3884.
doi: 10.1109/TIP.2019.2903322
pmid: 30869618
|
[7] |
Moussa M M, Shoitan R. Object-based video synopsis approach using particle swarm optimization[C]. London: Proceedings of the Signal, Image and Video, 2020.
|
[8] |
Namitha K, Narayanan A. Preserving interactions among moving objects in surveillance video synopsis[J]. Multimedia Tools and Applications, 2020, 79(43):32331-32360.
doi: 10.1007/s11042-020-09493-2
|
[9] |
Li X L, Wang Z G, Lu X Q. Surveillance video synopsis via scaling down objects[J]. IEEE Transactions on Image Processing, 2015, 25(2):740-755.
doi: 10.1109/TIP.2015.2507942
|
[10] |
Nie Y W, Li Z K, Zhang Z S, et al. Collision-free video synopsis incorporating object speed and size changes[J]. IEEE Transactions on Image Processing, 2020, 29(24):1465-1478.
doi: 10.1109/TIP.2019.2942543
|
[11] |
Zivkovic Z, Van Der Heijden F. Efficient adaptive density estimation per image pixel for the task of background subtraction[J]. Pattern Recognition Letters, 2006, 27(7):773-780.
doi: 10.1016/j.patrec.2005.11.005
|
[12] |
Wang Q, Zhang L, Bertinetto L, et al. Fast online object tracking and segmentation: A unifying approach[C]. Long Beach: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.
|
[13] |
曾照, 吴薇, 汪欣. 改进的核相关滤波跟踪算法[J]. 电子科技, 2020, 33(3):50-55.
|
|
Zeng Zhao, Wu Wei, Wang Xin. Improved kernelized correlation filter tracking[J]. Electronic Science and Technology, 2020, 33(3):50-55.
|
[14] |
Gilks W R, Richardson S, Spiegelhalter D. Markov chain monte carlo in practice[J]. Technometrics, 1997, 39(3):338-339.
|
[15] |
Metropolis N, Rosenbluth A W, Rosenbluth M N, et al. Equation of state calculations by fast computing machines[J]. The Journal of Chemical Physics, 1953, 21(6):1087-1092.
doi: 10.1063/1.1699114
|
[16] |
Hastings W K. Monte carlo sampling methods using Markov chains and their applications[J]. Biometrika, 1970, 57(1):97-109.
doi: 10.1093/biomet/57.1.97
|
[17] |
P'erez P, Gangnet M, Blake A. Poisson image editing[J]. ACM Tranactions on Graphics, 2003, 22(3):313-318.
|
[18] |
Corona K, Osterdahl K, Collins R, et al. MEVA: A large-scale multiview, multimodal video dataset for activity detection[C]. Virtual: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021.
|
[19] |
周俊, 袁佳明, 万伟江. 基于加权时变泊松模型的电力信用风险判别及预警系统设计[J]. 电子设计工程, 2021, 29(11):21-25.
|
|
Zhou Jun, Yuan Jiaming, Wan Weijiang. Power credit risk discrimination and early warning system design based on weighted time-varying Poisson model[J]. Electronic Design Engineering, 2021, 29(11):21-25.
|