西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (1): 39-45.doi: 10.19665/j.issn1001-2400.2019.01.007

• • 上一篇    下一篇

抗模糊的图像局部特征描述子

唐国良   

  1. 西安电子科技大学 计算机科学与技术学院,陕西 西安 710071
  • 收稿日期:2018-08-30 出版日期:2019-02-20 发布日期:2019-03-05
  • 作者简介:唐国良(1970-),男,西安电子科技大学博士研究生,E-mail: datang110@126.com.
  • 基金资助:
    国家自然科学基金(61173091)

Anti-fuzzy local feature descriptor on images

TANG Guoliang   

  1. School of Computer Science and Technology, Xidian Univ., Xi’an 710071, China
  • Received:2018-08-30 Online:2019-02-20 Published:2019-03-05

摘要:

针对提取图像局部特征时,尺度不变特征变换描述子对光照条件变化仅有部分不变性,特别对非线性光照变化不具备不变性,对模糊的目标图像也无法准确提取或仅能提取到很少特征点的问题,利用局部二值模式描述子对光照的健壮性提出了一种符合人类视觉系统的自底向上再到自顶向下的视觉认知过程的新的抗模糊的图像局部特征描述子。实验表明,所提出的描述子对光照变化有更好的健壮性,对模糊的目标图像能准确地提取出更多的特征点,保留了尺度不变特征变换对缩放、旋转和压缩等变换的不变性,并显著地提高了针对模糊图像的匹配率。

关键词: 特征描述子, 特征点匹配, 图像匹配, 目标识别

Abstract:

The SIFT descriptor is only partially invariant to illumination when extracting the local features of the image. In particular, the SIFT descriptor is not invariant to non-linear illumination changes and cannot accurately extract the feature points or few of them can be extracted from the fuzzy object image. In order to solve these problems, a new anti-fuzzy local feature descriptor is proposed that is consistent with the visual cognition process of the human visual system from bottom-top and top-down. Experimental results suggest that the proposed operator is robust to the changes of illumination conditions, and more feature points can be extracted accurately from the fuzzy object image. The proposed operator retains the advantages of SIFT descriptors such as invariance of scaling, rotation and compression, and can significantly improve the matching rate on fuzzy images.

Key words: feature descriptor, feature point matching, image matching, object recognition

中图分类号: 

  • TP391.4