[1] |
VAPNIK V N . The Nature of Statistical Learning Theory[J]. Technometrics, 1996,38(4):400.
doi: 10.1080/00401706.1996.10484552
|
[2] |
孙颖, 宋春晓 . 相空间重构的情感语音特征提取及优化[J]. 西安电子科技大学学报, 2017,44(6):162-168.
doi: 10.3969/j.issn.1001-2400.2017.06.028
|
|
SUN Ying, SONG Chunxiao . Emotional Speech Feature Extraction and Optimization of Phase Space Reconstruction[J]. Journal of Xidian University, 2017,44(6):162-168.
doi: 10.3969/j.issn.1001-2400.2017.06.028
|
[3] |
韩冰, 贾中华, 高新波 . 改进的主成分分析网络极光图像分类方法[J]. 西安电子科技大学学报, 2017,44(1):83-88.
doi: 10.3969/j.issn.1001-2400.2017.01.015
|
|
HAN Bing, JIA Zhonghua, GAO Xinbo . Improved PCANet for Aurora Images Classification[J]. Journal of Xidian University, 2017,44(1):83-88.
doi: 10.3969/j.issn.1001-2400.2017.01.015
|
[4] |
李美玲, 胡耀垓, 周晨 , 等. 支持向量机用于电离层foF2的短期区域预报[J]. 西安电子科技大学学报, 2015,42(5):147-153.
doi: 10.3969/j.issn.1001-2400.2015.05.025
|
|
LI Meiling, HU Yaogai, ZHOU Chen , et al. On the Short-term Regional Prediction of foF2 Based on the Support Vector Machine[J]. Journal of Xidian University, 2015,42(5):147-153.
doi: 10.3969/j.issn.1001-2400.2015.05.025
|
[5] |
SUYKENS J A K, VANDEWALLE J . Least Squares Support Vector Machine Classifiers[J]. Neural Processing Letters, 1999,9(3):293-300.
doi: 10.1023/A:1018628609742
|
[6] |
GAO Y F, SHAN X, HU Z X , et al. Extended Compressed Tracking via Random Projection Based on MSERs and Online LS-SVM Learning[J]. Pattern Recognition, 2016,59:245-254.
doi: 10.1016/j.patcog.2016.02.012
|
[7] |
RIZVI S Z, VELNI J M, ABBASI F , et al. State-space LPV Model Identification Using Kernelized Machine Learning[J]. Automatica, 2018,88:38-47.
doi: 10.1016/j.automatica.2017.11.004
|
[8] |
SHEN X T, TSENG G C, ZHANG X G , et al. On ψ-Learning[J]. Journal of the American Statistical Association, 2003,98(463):724-734.
doi: 10.1198/016214503000000639
|
[9] |
WU Y C, LIU Y F . Robust Truncated Hinge Loss Support Vector Machines[J]. Journal of the American Statistical Association, 2007,102:974-983.
doi: 10.1198/016214507000000617
|
[10] |
WANG K N, ZHONG P . Robust Non-convex Least Squares Loss Function for Regression with Outliers[J]. Knowledge-Based Systems, 2014,71:290-302.
doi: 10.1016/j.knosys.2014.08.003
|
[11] |
CHEN L, ZHOU S S . Sparse Algorithm for Robust LSSVM in Primal Space[J]. Neurocomputing, 2018,275:2880-2891.
doi: 10.1016/j.neucom.2017.10.011
|
[12] |
FENG Y L, YANG Y, HUANG X L , et al. Robust Support Vector Machines for Classification with Nonconvex and Smooth Losses[J]. Neural Computation, 2016,28(6):1217-1247.
doi: 10.1162/NECO_a_00837
pmid: 27137357
|
[13] |
YUILLE A, RANGARAJAN A . The Concave-convex Procedure[J]. Neural Computation, 2003,15(4):915-936.
doi: 10.1162/08997660360581958
|
[14] |
ZHOU S S . Sparse LSSVM in Primal Using Cholesky Factorization for Large Scale Problems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016,27(4):783-795.
doi: 10.1109/TNNLS.2015.2424684
|
[15] |
SCHÖLKOPF B, HERBRICH R, SMOLA A J. A Generalized Representer Theorem [C]// Lecture Notes in Computer Science: 2111. Heidelberg: Springer Verlag, 2001: 416-426.
|
[16] |
LEE C P, LIN C J . A Study on L2-Loss (Squared Hinge-Loss) Multiclass SVM[J]. Neural Computation, 2013,25(5):1302-1323.
doi: 10.1162/NECO_a_00434
|
[17] |
PHAM DINH T, LE H M, LE THI H A , et al. A Difference of Convex Functions Algorithm for Switched Linear Regression[J]. IEEE Transactions on Automatic Control, 2014,59(8):2277-2282.
doi: 10.1109/TAC.2014.2301575
|
[18] |
HE B S, YUAN X M . On the O(1/n) Convergence Rate of the Douglas-rachford Alternating Direction Method[J]. SIAM Journal on Numerical Analysis, 2012,50(2):700-709.
doi: 10.1137/110836936
|
[19] |
SRIPERUMBUDUR B K, LANCKRIET G R G . A Proof of Convergence of the Concave-convex Procedure Using Zangwill’s Theory[J]. Neural Computation, 2012,24(6):1391-1407.
doi: 10.1162/NECO_a_00283
pmid: 22364501
|
[20] |
SRIPERUMBUDUR B K, LANCKRIET G R G . On the Convergence of the Concave-convex Procedure [C]//Advances in Neural Information Processing Systems 22. Red Hook: Curran Associates Inc, 2009: 1759-1767.
|