西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (1): 106-111.doi: 10.19665/j.issn1001-2400.2019.01.017

• • 上一篇    下一篇

一种最大密度检测欠定混合矩阵估计算法

王川川1,曾勇虎1,付卫红2(),汪连栋1   

  1. 1. 电子信息系统复杂电磁环境效应国家重点实验室,河南 洛阳 471003
    2. 西安电子科技大学 综合业务网理论及关键技术国家重点实验室,陕西 西安710071
  • 收稿日期:2018-07-20 出版日期:2019-02-20 发布日期:2019-03-05
  • 通讯作者: 付卫红
  • 作者简介:王川川(1985-),男,助理研究员,E-mail: wangchuan1083@126.com.
  • 基金资助:
    国家973计划项目(61331903)

Estimation algorithm for an underdetermined mixing matrix based on maximum density point searching

WANG Chuanchuan1,ZENG Yonghu1,FU Weihong2(),WANG Liandong1   

  1. 1. State Key Lab. of Complex Electromagnetic Environment Effects on Electronics and Information System, Luoyang 471003
    2. State Key Lab. of Integrated Service Networks, Xidian Univ., Xi’an 710071, China;
  • Received:2018-07-20 Online:2019-02-20 Published:2019-03-05
  • Contact: Weihong FU

摘要:

针对源数未知条件下欠定盲源分离混合矩阵估计问题,提出了最大密度检测混合矩阵估计算法。在观测信号稀疏表示的基础上,首先对观测信号进行预处理;然后寻找观测信号的最大密度点;接着在此基础上确定有效样本点集合,再聚类得到辐射源数和混合矩阵。为验证算法的有效性,在时频单源点检测法和小波变换法下开展了仿真实验。结果表明,所提出算法的源数和混合矩阵估计效果优于参考算法,计算复杂度远低于参考算法。进一步实验表明,所提出算法对于正定、超定和欠定盲源分离混合矩阵的估计都具有较好的适用性。

关键词: 欠定盲源分离, 稀疏表示, 最大密度检测法, 源数估计, 混合矩阵估计

Abstract:

Aiming at mixing matrix estimation when the source number is unknown for underdetermined blind source separation (UBSS), a mixing matrix estimation method based on maximum density point searching is proposed. Based on sparse representation of observed signals, for the proposed algorithm, preprocessing of observed signals is processed first, and then the maximum density point of each observed signal is searched, after which the effective sample points are assembled, and then the source number and mixing matrix are estimated by the clustering method. For validation of the proposed algorithm, the simulations are developed by employing two sparse representation methods, which are single source point detection in the time-frequency domain and wavelet transform. Results show that the source number and the mixing matrix effect of the proposed algorithm are better than those of the reference algorithm, and that the calculation complexity of the proposed algorithm is much less than that of the reference algorithm. Further tests show that the proposed algorithm is applicable for mixing matrix estimation of positive-determined, overdetermined and underdetermined blind source separation models.

Key words: underdetermined blind source separation, sparse representation, maximum density point searching algorithm, source number estimation, mixing matrix estimation

中图分类号: 

  • TN911