西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (1): 166-173.doi: 10.19665/j.issn1001-2400.2019.01.026

• • 上一篇    下一篇

煤矿井下区间分段视距节点合作定位算法

赵彤1,2,李先圣1,2,张雷1,2,丁恩杰2(),胡延军1,2   

  1. 1. 中国矿业大学 信息与控制工程学院,江苏 徐州 221000
    2. 中国矿业大学 物联网研究中心,江苏 徐州 221008
  • 收稿日期:2018-03-08 出版日期:2019-02-20 发布日期:2019-03-05
  • 通讯作者: 丁恩杰
  • 作者简介:赵 彤(1993-), 女, 中国矿业大学硕士研究生,E-mail: zhaotongff@126.com
  • 基金资助:
    国家重点研发计划(2017YFC0804401)

Algorithm for cooperational localization of the sectional interval and LOS node in a coal mine

ZHAO Tong1,2,LI Xiansheng1,2,ZHANG Lei1,2,DING Enjie2(),HU Yanjun1,2   

  1. 1. School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221000, China
    2. IoT Perception Mine Research Center, China University of Mining and Technology, Xuzhou 221008, China
  • Received:2018-03-08 Online:2019-02-20 Published:2019-03-05
  • Contact: Enjie DING

摘要:

针对煤矿井下长距离定位时节点信号波动大、非视距路径信号衰减严重造成定位精度低问题,提出一种区间分段式视距节点合作定位算法。该算法利用学习向量量化聚类将长距离信号传输区间自定义分段,利用分段阈值选择未知节点所属区间;把已定位出结果的未知节点视为其他未知节点的虚拟参考节点,实现所有节点信息相互交流,在节点筛选思想下,利用信道状态信息,克服多径效应来寻找视距路径节点,将近距离区间内的已定位视距路径节点代替远距离区间内的参考节点,减少远距离参考节点的使用。结果表明,与传统未分段、未寻找视距路径节点合作的算法相比,定位误差只有1.5m,精度提高率达到85%。

关键词: 分段, 学习向量量化, 聚类, 视距路径, 信道状态信息, 节点合作

Abstract:

To overcome the problem of serious signal fluctuation and Non-line-of-sight signal attenuation with long distance positioning in a coal mine, a segmentation node cooperative localization algorithm is proposed. By using the learning vector quantization clustering to segment the long distance transmission interval, the threshold is used to select the range for an unknown node. We think of the unknown node that has been located as the virtual reference node of other unknown nodes, so that all node information can communicate with each other. In the idea of node screening, the multi-path effects are overcome and line-of-sight nodes are searched by channel state information. The reference nodes in the long range are replaced by the optimally located line-of-sight nodes in the close range. Results show that compared with the traditional unsegmented and unfinished line-of-sight path nodes, the positioning error is only 1.5m and the accuracy improvement rate is 85%.

Key words: segmentation, learning vector quantization, clustering, line-of-sight path, channel state information, node cooperation

中图分类号: 

  • TD655