西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (2): 124-131.doi: 10.19665/j.issn1001-2400.2019.02.021

• • 上一篇    下一篇

集成学习人工蜂群算法

杜振鑫1,刘广钟2,赵学华3()   

  1. 1. 韩山师范学院 计算机与信息工程学院,广东 潮州 521041
    2. 上海海事大学 信息工程学院,上海 201306
    3. 深圳信息职业技术学院 数字媒体学院,广东 深圳 518172
  • 收稿日期:2018-04-24 出版日期:2019-04-20 发布日期:2019-04-20
  • 通讯作者: 赵学华
  • 作者简介:杜振鑫(1976-),男,讲师, E-mail:duzhenxinmail@163.com.
  • 基金资助:
    潮州市科技计划项目(2018GY45);广东省自然科学基金(2018A030313339);广东省自然科学基金(2016A030310072);广东省普通高校特色创新类项目(2017GKTSCX063);国家自然科学基金(61571444);教育部人文社会科学研究青年基金(17YJCZH261);深圳市哲学社会科学十三五规划课题(SZ2018D017)

Ensemble learning artificial bee colony algorithm

DU Zhenxin1,LIU Guangzhong2,ZHAO Xuehua3()   

  1. 1. School of Computer Information Engineering, Hanshan Normal University, Chaozhou 521041, China
    2. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
    3. School of Digital Media, Shenzhen Institute of Information Technology, Shenzhen 518172, China
  • Received:2018-04-24 Online:2019-04-20 Published:2019-04-20
  • Contact: Xuehua ZHAO

摘要:

为了抑制人工蜂群算法中的早熟收敛问题,提出一种集成学习框架,挖掘种群中的有用信息来抑制早熟。当个体产生候选解的时候,通过对所有好于当前解的个体线性组合,产生一个集成最优解;然后利用相应的人工蜂群算法的搜索公式产生候选解,该公式中的全局最优解被集成最优解代替。该框架通过产生更有希望的个体带领算法进化,帮助算法逃离局部最优解。实验表明,新的集成学习框架显著地提高了全局最优解引导的人工蜂群算法的性能,而没有增加算法的计算复杂度,且该框架可提高全局最优解引导的差分、粒子群算法的性能。

关键词: 人工蜂群算法, 集成学习, 粒子群算法, 差分进化算法, 进化计算

Abstract:

To restrain the precocity problem in the artificial bee colony algorithm (ABC),an ensemble learning framework is proposed to discover more useful information that lies in the current population. When an individual produces a candidate, an ensemble best (ebest) solution will be generated by linearly combining all the solutions better than the current solution, and then the candidate will be generated by using corresponding ABC’s search equations, but the global best solution (gbest) term in the search equations will be replaced by the ebest term. The proposed framework provides more promising solutions to guide the evolution and effectively helps ABCs escape the local optima. Experiments show that the novel ensemble learning framework can significantly improve the performance of gbest guided ABCs without increasing their complexity. Moreover, the proposed framework can be utilized to improve the performance of particle swarm optimization and differential evolution variants.

Key words: artificial bee colony, ensemble learning, particle swarm optimization, differential evolution, evolution computation

中图分类号: 

  • TP18