[1] |
SZEGEDY C, LIU W, JIA Y , et al. Going Deeper with Convolutions[C]// Proceedings of the 2015 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2015: 1-9.
|
[2] |
HINTON G, DENG L, YU D , et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition[J]. IEEE Signal Processing Magazine, 2012,29(6):82-97.
|
[3] |
HUANG Z, SINISCALCHI S M, LEE C H . A Unified Approach to Transfer Learning of Deep Neural Networks with Applications to Speaker Adaptation in Automatic Speech Recognition[J]. Neurocomputing, 2016,218:448-459.
doi: 10.1016/j.neucom.2016.09.018
|
[4] |
HE K M, ZHANG X Y, REN S Q , et al. Deep Residual Learning for Image Recognition[C]// Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2016: 770-778.
|
[5] |
LI W, ZHAO R, XIAO T , et al. DeepReID: Deep Filter Pairing Neural Network for Person Re-identification[C]// Proceedings of the 2014 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2014: 152-159.
|
[6] |
REN S Q, HE K M, GIRSHICK R , et al. Faster R-CNN: Towards Real-time Object Detection with Region Proposal Networks[C]// Advances in Neural Information Processing Systems: 2015. Vancouver, Canada: Neural Information Processing Systems Foundation, 2015: 91-99.
|
[7] |
LIU W, ANGUELOV D, ERHAN D , et al. SSD: Single Shot Multibox Detector[C]// Lecture Notes in Computer Science: 9905. Heidelberg: Springer Verlag, 2016: 21-37.
|
[8] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E . Imagenet Classification with Deep Convolutional Neural Networks[C]// Advances in Neural Information Processing Systems: 2012. Vancouver, Canada: Neural Information Processing Systems Foundation, 2012: 1097-1105.
|
[9] |
IOFFE S, SZEGEDY C . Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[C]// Proceedings of the 2015 32nd International Conference on Machine Learning. Lille: International Machine Learning Society, 2015: 448-456.
|
[10] |
SZEGEDY C, IOFFE S, VANHOUCKE V , et al. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning[C]// Proceedings of the 2017 31st AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2017: 4278-4284.
|
[11] |
HUANG G, LIU Z, VAN DER MAATEN L , et al. Densely Connected Convolutional Networks[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269.
|
[12] |
XIE S N, GIRSHICK R, DOLLAR P , et al. Aggregated Residual Transformations for Deep Neural Networks[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 5987-5995.
|
[13] |
HAN S, MAO H Z, DALLY W J . Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding[CP/OL]. [2018-04-12]. https://arxiv.org/pdf/1510.00149.pdf.
doi: 10.1145/2351676.2351678
|
[14] |
HAN S, POOL J, TRAN J , et al. Learning Both Weights and Connections for Efficient Neural Network[C]// Advances in Neural Information Processing Systems: 2015. Vancouver, Canada: Neural Information Processing Systems Foundation, 2015: 1135-1143.
|
[15] |
FRANCOIS C . Xception: Deep Learning with Depthwise Separable Convolutions[C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807.
|
[16] |
IANDOLA F N, MOSKEWICZ M W, ASHRAF K , et al. SqueezeNet: AlexNet-level Accuracy with 50x Fewer Parameters and <1MB Model Size[CP/OL]. [2018-04-12]. https://arxiv.org/pdf/1602.07360v2.pdf.
|
[17] |
HUBARA I, COURBARIAUX M, SOUDRY D , et al. Binarized Neural Networks[C]// Advances in Neural Information Processing Systems: 2016. Vancouver, Canada: Neural Information Processing Systems Foundation, 2016: 4114-4122.
|
[18] |
COURBARIAUX M, BENGIO Y, DAVID J P Binaryconnect: Training Deep Neural Networks with Binary Weights during Propagations[C]// Advances in Neural Information Processing Systems: 2015. Vancouver, Canada: Neural Information Processing Systems Foundation, 2015: 3123-3131.
|
[19] |
RASTEGARI M, ORDONEZ V, REDMON J , et al. XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks[C]// Lecture Notes in Computer Science: 9908. Heidelberg: Springer Verlag, 2016: 525-542.
|
[20] |
LI F F, ZHANG B, LIU B . Ternary Weight Networks[CP/OL]. [2018-04-12]. https://arxiv.org/pdf/1605.04711.pdf.
|
[21] |
LECUN Y, BOTTOU L, BENGIO Y , et al. Gradient-based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998,86(11):2278-2324.
doi: 10.1109/5.726791
|