西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (2): 145-151.doi: 10.19665/j.issn1001-2400.2019.02.024

• • 上一篇    下一篇

哈希索引的扩展置信规则库推理方法

刘莞玲,肖承志,傅仰耿()   

  1. 福州大学 数学与计算机科学学院,福建 福州 350116
  • 收稿日期:2018-10-23 出版日期:2019-04-20 发布日期:2019-04-20
  • 通讯作者: 傅仰耿
  • 作者简介:刘莞玲(1991-),女,福州大学硕士研究生,E-mail:380509981@qq.com
  • 基金资助:
    国家自然科学基金(71501047);国家自然科学基金(61773123)

Extended belief rule base inference method based on the Hash index

LIU Wanling,XIAO Chengzhi,FU Yanggeng()   

  1. College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116, China
  • Received:2018-10-23 Online:2019-04-20 Published:2019-04-20
  • Contact: Yanggeng FU

摘要:

由于扩展置信规则库在推理过程中需要遍历规则库中所有的无序规则,所以当规则库很大时,扩展置信规则库系统的推理效率不高。鉴于此,提出使用局部敏感哈希算法构建置信规则索引的优化方法。首先用局部敏感哈希算法为规则库中的所有规则生成特殊的局部敏感哈希值,该哈希值能尽量保持原始规则之间的相似度,因此相似的规则有较大的概率得到相同的索引值;然后通过对输入数据的处理,在索引表中找到与输入数据邻近的规则,并有选择地激活这些规则,从而提高该系统的组合推理效率;最后通过选用非线性函数拟合实验和输油管道的泄漏检测仿真实验,对基于局部敏感哈希索引的扩展置信规则库系统进行检测和验证。实验结果表明,局部敏感哈希算法能够有效地优化扩展置信规则库系统的推理效率,并能够提高输出结果的准确率。

关键词: 扩展置信规则库, 局部敏感哈希, 索引优化, 证据推理

Abstract:

Since the extended belief rule base needs to iterate by all the unordered rules in the inference process, it will result in a low efficiency of the belief rule base in system inference with a large number of rules. Therefore, this paper proposes to use the Locality Sensitive Hashing algorithm to index the confidence rule. First, Locality Sensitive Hashing is used to generate special locality sensitive hash value for all the rules in the Extended belief rule base and the hash value can keep the similarity between the original rules, so that similar rules have a greater probability of obtaining the same index value. Then, by processing the input data, we find the rules that are adjacent to the input data in the index table, and selectively activate these rules, thus improving the system’s inference efficiency. Finally, by choosing a nonlinear function fitting experiment and a simulation experiment on oil pipeline leak to the detection Extended belief rule base system based on the Locality Sensitive Hashing index, experimental results show that the Locality Sensitive Hashing algorithms can effectively optimize the Extended belief rule base system inference efficiency and improve the accuracy of the output results.

Key words: extended belief rule base, locality sensitive Hashing, index optimization, evidential reasoning

中图分类号: 

  • TP18