[1] |
周志杰, 杨剑波, 胡昌华 . 置信规则库专家系统与复杂系统建模[M]. 北京: 科学出版社, 2011.
|
[2] |
DEMPSTER A P . A Generalization of Bayesian Inference[J]. Journal of the Royal Statistical Society, Series B: Methodological, 1968,30(2):205-247.
doi: 10.1007/978-3-540-44792-4_4
|
[3] |
SHAFER G. A Mathematical Theory of Evidence[M]. Princeton: Princeton University Press, 1976.
|
[4] |
HWANG C L, YOON K . Multiple Attribute Decision Making[M]. Heidelberg: Springer-Verlag, 1981.
|
[5] |
ZADEH L A . Fuzzy Sets[J]. Information and Control, 1965,8(3):338-353.
doi: 10.1016/S0019-9958(65)90241-X
|
[6] |
SUN R . Robust Reasoning: Integrating Rule-based and Similarity Based Reasoning[J]. Artificial Intelligence, 1995,75(2):241-295.
doi: 10.1016/0004-3702(94)00028-Y
|
[7] |
YANG J B, LIU J, WANG J , et al. Belief Rule-base Inference Methodology Using the Evidential Reasoning Approach-RIMER[J]. IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans, 2006,36(2):266-285.
doi: 10.1109/TSMCA.2005.851270
|
[8] |
YANG J B . Rule and Utility Based Evidential Reasoning Approach for Multiattribute Decision Analysis under Uncertainties[J]. European Journal of Operational Research, 2001,131(1):31-61.
doi: 10.1016/S0377-2217(99)00441-5
|
[9] |
YANG J B, XU D L . On the Evidential Reasoning Algorithm for Multiple Attribute Decision Analysis under Uncertainty[J]. IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans, 2002,32(3):289-304.
doi: 10.1109/TSMCA.2002.802746
|
[10] |
ABUDAHAB K, XU D L, CHEN Y W . A New Belief Rule Base Knowledge Representation Scheme and Inference Methodology Using the Evidential Reasoning Rule for Evidence Combination[J]. Expert Systems with Applications, 2016,51(C):218-230.
doi: 10.1016/j.eswa.2015.12.013
|
[11] |
刘莞玲, 王韩杰, 傅仰耿 , 等. 基于差分进化算法的置信规则库推理的分类方法[J]. 中国科学技术大学学报, 2016,46(9):764-773.
|
|
LIU Wanling, WANG Hanjie, FU Yanggeng , et al. Belief rule based inference methodology for classification based on differential evolution algorithm[J]. Journal of University of Science and Technology of China, 2016,46(9):764-773.
|
[12] |
YANG J B, LIU J, XU D L , et al. Optimization Models for Training Belief-rule-based Systems[J]. IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans, 2007,37(4):569-585.
doi: 10.1109/TSMCA.2007.897606
|
[13] |
杨慧, 吴沛泽, 倪继良 . 基于改进粒子群置信规则库参数训练算法[J]. 计算机工程与设计, 2017(2):400-404.
doi: 10.16208/j.issn1000-7024.2017.02.023
|
|
YANG Hui, WU Peize, NI Jiliang . Belief Rule Base Parameter Training Approach Based on Improved Particle Swarm Optimization[J]. Computer Engineering and Design, 2017(2):400-404.
doi: 10.16208/j.issn1000-7024.2017.02.023
|
[14] |
QIAN B, WANG Q Q, HU R , et al. An Effective Soft Computing Technology Based on Belief-rule-base and Particle Swarm Optimization for Tipping Paper Permeability Measurement[J]. Journal of Ambient Intelligence and Humanized Computing, 2017(15):1-10.
doi: 10.1007/s12652-017-0667-1
|
[15] |
LIU J, MARTINEZ L, CALZADA A , et al. A Novel Belief Rule Base Representation, Generation and Its Inference Methodology[J]. Knowledge-Based Systems, 2013,53:129-141.
doi: 10.1016/j.knosys.2013.08.019
|
[16] |
苏群, 杨隆浩, 傅仰耿 , 等. 基于BK 树的扩展置信规则库结构优化框架[J]. 计算机科学与探索, 2016,10(2):257-267.
doi: 10.3778/j.issn.1673-9418.1505065
|
|
SU Qun, YANG Longhao, FU Yanggeng , et al. Structure Optimization Framework of Extended Belief Rule Base Based on BK-Tree[J]. Journal of Frontiers of Computer Science and Technology, 2016,10(2):257-267.
doi: 10.3778/j.issn.1673-9418.1505065
|
[17] |
DATAR M, INDYK P, IMMORLICA N , et al. Locality-sensitive Hashing Scheme Based on p-stable Distributions[C]// Proceedings of the 2004 Annual Symposium on Computational Geometry. New York: ACM, 2004: 253-262.
|
[18] |
LI J W, LIU X X . Evidence Combination Rule Based on Vector Conflict Representation Method[J]. Computer Science, 2016,43(12):58-62.
|
[19] |
CHEN Y W, YANG J B, XU D L , et al. On the Inference and Approximation Properties of Belief Rule Based Systems[J]. Information Sciences, 2013,234:121-135.
doi: 10.1016/j.ins.2013.01.022
|
[20] |
DU Y W, WANG Y M . Evidence Combination Rule with Contrary Support in the Evidential Reasoning Approach[J]. Expert Systems with Applications, 2017,88:193-204.
doi: 10.1016/j.eswa.2017.06.045
|