西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (3): 14-19.doi: 10.19665/j.issn1001-2400.2019.03.003

• • 上一篇    下一篇

一种自适应的拟牛顿投影稀疏信号恢复算法

周雪芹1,2,冯象初1,景明利3   

  1. 1. 西安电子科技大学 数学与统计学院,陕西 西安 710071
    2. 西安财经大学 统计学院,陕西 西安 710100
    3. 西安石油大学 电子工程学院,陕西 西安 710065
  • 收稿日期:2018-11-09 出版日期:2019-06-20 发布日期:2019-06-19
  • 作者简介:周雪芹(1979-),女,讲师,西安电子科技大学博士研究生,E-mail:zxq-7909@163.com.
  • 基金资助:
    国家自然科学基金(61673314);国家自然科学基金(61772389)

Adaptive quasi-newton projection algorithm for sparse recovery

ZHOU Xueqin1,2,FENG Xiangchu1,JING Mingli3   

  1. 1. School of Mathematics and Statistics, Xidian Univ., Xi’an 710071, China;
    2. School of Statistics, Xi’an Univ. of Finance and Economics, Xi’an 710100, China;
    3. School of Electronic Engineering, Xi’an Shiyou Univ., Xi’an 710065, China;
  • Received:2018-11-09 Online:2019-06-20 Published:2019-06-19

摘要:

针对稀疏恢复中贪婪类算法需要提前已知稀疏度的问题,提出了一种自适应拟牛顿投影稀疏恢复算法。该算法分为两层循环:外层循环主要是利用阈值算子估计信号的稀疏度,内层循环在外层迭代估计的当前稀疏度下,基于拟牛顿投影算法完成稀疏信号恢复。仿真实验表明:该方法相对于需要事先已知稀疏度的贪婪算法,可在稀疏度未知的情况下获得稀疏信号的较优逼近性与恢复率。

关键词: 稀疏恢复, 压缩感知, 自适应, 拟牛顿, 投影

Abstract:

An adaptive quasi-Newton projection sparse restoration algorithm is proposed to solve the problem that greedy algorithms need to know the sparsity in advance. The algorithm consists of two layers: the sparsity of the signal is estimated by using the threshold operator in the outer loop, and the sparse signal is recovered based on the quasi-Newton projection algorithm under the current sparsity of the outer iterative estimation in the inner loop. Simulation results show that this method has a better approximation performance and recovery rate of sparse signals with unknown sparsity compared with the greedy algorithms with known sparsity in advance.

Key words: sparse recovery, compressed sensing, adaptive, quasi-Newton, projection

中图分类号: 

  • TN919.6