西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (3): 52-58.doi: 10.19665/j.issn1001-2400.2019.03.009

• • 上一篇    下一篇

一种改进卷积神经网络的教学图像检索方法

刘道华1,2,崔玉爽1,赵岩松1,宋玉婷1,王景慧1   

  1. 1. 信阳师范学院 计算机与信息技术学院,河南 信阳 464000
    2. 信阳师范学院 河南省教育大数据分析与应用重点实验室,河南 信阳 464000
  • 收稿日期:2018-11-21 出版日期:2019-06-20 发布日期:2019-06-19
  • 作者简介:刘道华(1974-),男,教授,博士,E-mail: ldhzzx@163.com.
  • 基金资助:
    国家自然科学基金(31872704);河南省重点研发与推广专项(182102210537);河南省高等教育教学改革项目(2017SJGLX389);河南省教师教育课程改革项目(2019-JSJYYB-031)

Method for retrieving the teaching image based on the improved convolutional neural network

LIU Daohua1,2,CUI Yushuang1,ZHAO Yansong1,SONG Yuting1,WANG Jinghui1   

  1. 1. School of Computer and Information Technology, Xinyang Normal Univ. , Xinyang 464000, China
    2. Henan Key Lab. of Analysis and Applications of Education Big Data, Xinyang Normal Univ. , Xinyang 464000, China
  • Received:2018-11-21 Online:2019-06-20 Published:2019-06-19

摘要:

针对卷积神经网络在提取图像特征时所造成的特征信息损失以及降低高维度图像特征数据等问题,提出了一种改进卷积神经网络的图像检索优化方法。该方法首先利用融合的卷积层提取图像特征,并在融合的卷积层之间添加全连接层以减少特征信息的丢失;然后采用主成分分析法对高维的特征数据进行有效的降维处理;最后采用余弦相似度的方法进行相似度匹配,以实现相似图像的检索。采用当前经典的LeNet-L、LeNet-5等方法同文中方法在图像检索性能评价指标上进行对比实验。实验结果表明,所提出的检索方法比文中其他检索方法在查全率和平均查准率方面提高了3%27.3%。

关键词: 图像检索, 卷积神经网络, 特征提取, 主成分分析

Abstract:

Aiming at the loss of feature information caused by the convolution neural network in extracting image features and the reduction of high-dimensional image feature data, an image retrieval optimization scheme based on the improved convolution neural network is proposed. First, the image features are extracted through the convolutional layer of fusion, and a full connection layer is added between the convolutional layers of fusion to reduce the loss of image feature information. Then the PCA is used to effectively reduce the dimension of high-dimensional characteristic data and the high-dimensional feature vectors are mapped to the low-dimensional vector space. Finally, the cosine similarity method is used to match the similarity to achieve similar image retrieval. The proposed method is compared with classical methods such as LeNet-L and LeNet-5 in the performance of image retrieval. Experimental results show that the proposed retrieval method improves the recall rate and the average precision rate by at least 3%27.3% compared with classical methods.

Key words: image retrieval, convolution neural network, feature extraction, principal component analysis

中图分类号: 

  • TP399