西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (3): 109-115.doi: 10.19665/j.issn1001-2400.2019.03.017

• • 上一篇    下一篇

融合谱-空域信息的DBM高光谱图像分类方法

杨建功,汪西莉,刘侍刚   

  1. 陕西师范大学 计算机科学学院,陕西 西安 710119
  • 收稿日期:2018-12-19 出版日期:2019-06-20 发布日期:2019-06-19
  • 作者简介:杨建功(1974-),男,讲师,陕西师范大学博士研究生,E-mail: yangjiangong@snnu.edu.cn.
  • 基金资助:
    国家自然科学基金(41471280);国家自然科学基金(61701290);国家自然科学基金(61701289)

Spectral-spatial classification of hyperspectral images using deep Boltzmann machines

YANG Jiangong,WANG Xili,LIU Shigang   

  1. School of Computer Science, Shaanxi Normal University, Xi'an 710119, China
  • Received:2018-12-19 Online:2019-06-20 Published:2019-06-19

摘要:

在高光谱图像分类问题中,提取能够有效表达地物特征的信息是分类方法中的关键问题。为了提高高光谱图像分类精度,提出一种基于深度玻尔兹曼机的高光谱图像分类方法。该方法首先对高光谱图像数据进行主成分分析法白化处理,并提取像元的空域信息,与像元光谱信息组成综合的谱-空域信息;然后通过多层深度玻尔兹曼机模型从像元的谱-空域信息中提取深层次类别特征;最后通过逻辑回归模型对所提取特征进行分类。这种深度玻尔兹曼机模型能够利用数据的先验知识对高维数据进行特征提取,并且所提取的特征内在地表示了地物的空间结构和光谱特征。实验结果表明,这种方法能够有效地提高高光谱图像的分类精度。

关键词: 高光谱图像, 特征提取, 深度学习, 深度玻尔兹曼机

Abstract:

In the classification of hyperspectral images, extracting more expressive information on the ground objects from the data is a key problem in the classification method. For the purpose of improving classification accuracy, a classification method based on the Deep Boltzmann Machine (DBM) is proposed. First, PCA whitening is performed on the hyperspectral image data, and spatial information on pixels is extracted, followed by the combination with the spectral information on the pixel to construct hybrid spectral-spatial information on pixels; Second, deep features are extracted from the spectral-spatial information on pixels by the multi-layer DBM model; finally, the extracted features are classified based on the logistic regression model. The Deep Boltzmann Machine can extract features from high-dimensional data using prior knowledge, and the extracted features inherently represent the spatial structure and spectral characteristics of objects. Experimental results show that the proposed method can effectively improve the classification accuracy of hyperspectral images.

Key words: hyperspectral image, feature extraction, deep learning, deep Boltzmann machine

中图分类号: 

  • TP751.1