西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (4): 35-42.doi: 10.19665/j.issn1001-2400.2019.04.006

• • 上一篇    下一篇

采用U-Net卷积网络的桥梁裂缝检测方法

朱苏雅1,杜建超1,李云松1,汪小鹏2   

  1. 1.西安电子科技大学 综合业务网理论及关键技术国家重点实验室,陕西 西安 710071
    2.西安公路研究院,陕西 西安 710065
  • 收稿日期:2019-03-20 出版日期:2019-08-20 发布日期:2019-08-15
  • 作者简介:朱苏雅(1994—),女,西安电子科技大学硕士研究生,E-mail: suya_z@163.com.
  • 基金资助:
    国家自然科学基金(61372069)

Method for bridge crack detection based on the U-Net convolutional networks

ZHU Suya1,DU Jianchao1,LI Yunsong1,WANG Xiaopeng2   

  1. 1.State Key Lab. of Integrated Service Networks, Xidian Univ., Xi’an 710071, China
    2.Xi’an Highway Research Institute, Xi’an 710065,China
  • Received:2019-03-20 Online:2019-08-20 Published:2019-08-15

摘要:

针对传统的桥梁裂缝检测准确性不高、丢失细节信息、宽度信息获取困难等问题,提出一种采用U-Net卷积网络的像素级、小样本的裂缝检测方法。该方法使用多层卷积自动提取裂缝特征,并利用浅层网络与深层网络叠加的方法实现裂缝局部特征与抽象特征的融合,从而保留裂缝细节特征,使得检测准确性大大提升。对检测结果中出现的背景杂波和伪裂缝,采用阈值法和改进的迪杰斯特拉连接算法来实现裂缝的精细提取。最后,采用八方向搜索法实现裂缝宽度的精确测量。实验证明,所提方法能准确、完整地对桥梁裂缝进行提取,宽度测量准确,可以满足应用需求。

关键词: 图像处理, 桥梁裂缝检测, 卷积神经网络, U-Net网络

Abstract:

In order to improve the accuracy of bridge crack detection, retain details, and get information on the crack width, the paper proposes a pixel-wise and small sample crack detection method by using U-Net convolutional neural networks. The method uses a U-Net network to extract crack features automatically by using multi-layer convolutions, and uses the superposition of the shallow network and deep network to realize the fusion of local features and abstract features of cracks. This method can retain the details of cracks and greatly improve the accuracy of detection. In order to refine the detection results, the paper presents the threshold method and an improved Dijkstra minimum spanning tree algorithm for eliminating noise and pseudo cracks. Finally, an eight-direction searching method is applied to measure the width of cracks in pixels. Experiments prove that the proposed method can accurately and completely detect bridge cracks and measure the width, which can meet the application requirements.

Key words: image processing, bridge cracks detection, convolutional neural networks, U-Net network

中图分类号: 

  • TP751