[1] |
TONG X, GUO J, LING Y. et al. A New Image-based Method for Concrete Bridge Bottom Crack Detection [C]//Proceedings of the 2011 International Conference on Image Analysis and Signal Processing. Washington: IEEE Computer Society, 2011: 568-571.
|
[2] |
XU H, TIAN Y, LIN S. et al. Research of Image Segmentation Algorithm Applied to Concrete Bridge Cracks [C]//Proceedings of the 2013 IEEE Third International Conference on Information Science and Technology. Washington: IEEE Computer Society, 2013: 1637-1640.
|
[3] |
PRASANNA P, DANA K J, GUCUNSKI N , et al. Automated Crack Detection on Concrete Bridges[J]. IEEE Transactions on Automation Science and Engineering, 2016,13(2):591-599.
|
[4] |
GUAN H, LI J, YU Y , et al. Iterative Tensor Voting for Pavement Crack Extraction Using Mobile Laser Scanning Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015,53(3):1527-1537.
|
[5] |
马苗, 许西丹, 武杰 . 一种耦合深度信念网络的图像识别方法[J]. 西安电子科技大学学报, 2018,45(5):102-107.
|
|
MA Miao, XU Xidan, WU Jie . Coupled-deep Belief NetworkBased Method for Image Recognition[J]. Journal of Xidian University, 2018,45(5):102-107.
|
[6] |
许强, 李伟, 占荣辉 , 等. 一种改进的卷积神经网络SAR目标识别算法[J]. 西安电子科技大学学报, 2018,45(5):177-183.
|
|
XU Qiang, LI Wei, ZHAN Ronghui , et al. Improved Algorithm for SAR Target RecognitionBased on the Convolutional Neural Network[J]. Journal of Xidian University, 2018,45(5):177-183.
|
[7] |
ZHANG L, YANG F, ZHANG Y. et al. Road Crack Detection Using Deep Convolutional Neural Network [C]//Proceedings of the 2016 IEEE International Conference on Image Processing. Washington: IEEE Computer Society, 2016: 3708-3712.
|
[8] |
SHELHAMER E, LONG J, DARRELL T . Fully Convolutional Networks for Semantic Segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017,39(4):640-651.
|
[9] |
RONNERBERGER O, FISCHER P, BROX T. U-Net: Convolutional Networks for Biomedical Image Segmentation [C]//Lecture Notes in Computer Science: 9351. Heidelberg: Springer Verlag, 2015: 234-241.
|
[10] |
LIU Z, SONG Y Q, SHENG V S , et al. Liver CT Sequence Segmentation Based with Improved U-Net and Graph Cut[J]. Expert Systems with Applications, 2019,126:54-63.
|
[11] |
LIAN S, LUO Z, ZHONG Z , et al. Attention Guided U-Net for Accurate Iris Segmentation[J]. Journal of Visual Communication and Image Representation, 2018,56:296-304.
|
[12] |
FENG W, SUI H, HUANG W , et al. Water Body Extraction From Very High-resolution Remote Sensing Imagery Using Deep U-Net and a Superpixel-based Conditional Random Field Model[J]. IEEE Geoscience and Remote Sensing Letters, 2019,16(4):618-622.
|
[13] |
ZHANG Z, LIU Q, WANG Y . Road Extraction by Deep Residual U-Net[J]. IEEE Geoscience and Remote Sensing Letters, 2018,15(5):749-753.
|
[14] |
任亮, 徐志刚, 赵祥模 , 等. 基于Prim最小生成树的路面裂缝连接算法[J]. 计算机工程, 2015,41(1):31-36.
doi: 10.3969/j.issn.1000-3428.2015.01.006
|
|
REN Liang, XU Zhigang, ZHAO Xiangmo , et al. Pavement Crack Connection Algorithm Based on Prim Minimum Spanning Tree[J]. Computer Engineering, 2015,41(1):31-36.
doi: 10.3969/j.issn.1000-3428.2015.01.006
|
[15] |
BATAINEH B . An Iterative Thinning Algorithm for Binary Images Based on Sequential and Parallel Approaches[J]. Pattern Recognition and Image Analysis, 2018,28(1):34-43.
|